Monotonie

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche

zurück zu Eigenschaften von Funktionen


  Aufgabe 1  Stift.gif

Betrachte die folgenden Funktionen im angegebenen Intervall. Die Funktionen sind durch Funktionsterm und Graph gegeben.

a) f:x \rightarrow x^2 für x \in R^+
Monotonie quadratfunktion.jpg
b) f:x \rightarrow sin(x) im Intervall [0;1]
Montonie sinusfunktion.jpg
c) f:x \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1 im Intervall [0;3]
Monotonie kubikfunktion.jpg

Was fällt dir auf? Was haben die drei Funktionsgraphen in den angegebenen Intervallen gemeinsam?


[Lösung anzeigen]

Dieser Begriff des Ansteigens eines Funktionsgraphen fassen wir genauer und benennen ihn.

Maehnrot.jpg
Merke:

Eine Funktion  f heißt streng monoton zunehmend im Intervall [a;b], wenn für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) < f(x_2)


  Aufgabe 2  Stift.gif

Betrachte die folgenden Funktionen in den angegebenen Intervallen Quadratfunktion in den angegebenen Intervallen </center>

a) f:x \rightarrow x^2 für x \in R^-
Monotonie quadratfunktion2.jpg

b) f:x \rightarrow sin(x) im Intervall [2;3]
Montonie sinusfunktion.jpg
c) f:x \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1 im Intervall [-3;0]
Monotonie kubikfunktion2.jpg

Was stellst du nun fest? Was haben alle drei Graphen in den angegebenen Intervallen gemeinsam?


[Lösung anzeigen]


Auch diesen Begriff des Fallens eines Funktionsgraphen fassen wir - analog zu oben - genauer und benennen ihn.

Maehnrot.jpg
Merke:

Eine Funktion  f heißt streng monoton abnehmend im Intervall [a;b], wenn für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) > f(x_2)

In diesem Video wird nochmals der Begriff Monotonie erklärt:


Man könnte diese Begriffe monoton zunehmend und monoton abnehmend auch für die Funktionsgraphen übernehmen, hier verwendet man allerdings monoton steigend und monoton fallend.

Maehnrot.jpg
Merke:

Eine Funktionsgraph  G_f heißt streng monoton steigend im Intervall [a;b], wenn die Funktion f dort streng monoton zunehmend ist,
d.h.für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) < f(x_2)

Eine Funktionsgraph  G_f heißt streng monoton fallend im Intervall [a;b], wenn die Funktion f dort streng monoton abnehmend ist,
d.h. für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) > f(x_2)


  Aufgabe 3  Stift.gif

Teste dich! Klicke im folgenden Quiz auf die richtigen Zuordnungen!


Monotonie f1.jpg

Monotonie f2.jpg

Monotonie f5.jpg

Monotonie f3.jpg

Monotonie f6.jpg

Monotonie f4.jpg

Monotonie f7.jpg

prüfen!

  Aufgabe 4  Stift.gif

Teste dich! Klicke im folgenden Quiz auf die richtigen Zuordnungen!

Du kannst als Hilfe GeoGebra öffnen, dir die Graphen der Funktionen zeichnen lassen und dann die Fragen beantworten.



f:x \rightarrow x^2 im Intervall [2;8]

f:x \rightarrow 2sin(x) + 3 im Intervall [\pi;\frac{3}{2}\pi]

f:x \rightarrow 2^x im Intervall [-1;4]

f:x \rightarrow log_2(x) im Intervall [-1;4]

f:x \rightarrow 4-x^2 im Intervall [-1;4]

f:x \rightarrow x^2+2x+1 im Intervall [2;8]

f:x \rightarrow x^n mit  n gerade im Intervall [-4;-1]

f:x \rightarrow x^n mit  n ungerade im Intervall [-3;9]

prüfen!

  Aufgabe 5  Stift.gif

Bestimme die Parameterwerte r, für die die Funktion  f: x \rightarrow rx^2 - 2 so, dass  f

  1. im Intervall [1;3] monoton zunehmend ist.
  2. im Intervall [1;3] monoton abnehmend ist.
  3. im Intervall [-2,5;-1] monoton zunehmend ist.
  4. im Intervall [-2,5;-1] monoton abnehmend ist.
  5. im Intervall [-1;1] monoton zunehmend ist.


[Lösung anzeigen]

  Aufgabe 5  Stift.gif

Bestimme die Parameterwerte r, für die die Funktion  f: x \rightarrow sin(rx) + 1 so, dass  f

  1. im Intervall [ \frac{\pi}{2};\pi] monoton zunehmend ist.
  2. im Intervall [ \frac{\pi}{2};\pi] monoton abnehmend ist.


[Lösung anzeigen]




zurück zu Eigenschaften von Funktionen