Symmetrie: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 36: Zeile 36:
 
}}
 
}}
  
Im folgenden Video siehst du weitere Beispiele zur Symmetrie:
+
Im folgenden Video siehst du je ein  Beispiel einer Polynomfunktion zur Achsensymmetrie und zur Punktsymmetrie und es wird ausführlich erklärt, wie du dies durch Rechnung überprüfen kannst.
  
 
<center>>{{#ev:youtube |gL3ea3Nbz_Y|350}}</center>
 
<center>>{{#ev:youtube |gL3ea3Nbz_Y|350}}</center>

Version vom 3. Januar 2012, 18:06 Uhr

zurück zu Eigenschaften von Funktionen


  Aufgabe 1  Stift.gif

Schau dir diesen Video an:


1. Erkläre in wenigen Sätzen, wann ein Funktionsgraph
a) achsensymmetrisch zur y-Achse
b) punktsymmetrisch zum Ursprung ist.

Im folgenden Applet ist ein Punkt A auf der Normalparabel an der y-Achse gespiegelt. Der Spiegelpunkt ist A'.

2. Überprüfe indem du den Punkt A bewegst, ob der Funktionsgraph der Quadratfunktion f:x \rightarrow x^2 achsensymmetrisch zur y-Achse ist.

Im folgenden Applet ist ein Punkt A auf der Kubikparabel am Usprung gespiegelt. Der Spiegelpunkt ist A'.

3. Überprüfe indem du den Punkt A bewegst, ob der Funktionsgraph der Kubikfunktion f:x \rightarrow x^3 punktsymmetrisch zum Ursprung ist.


Maehnrot.jpg
Merke:
  • Der Graph einer Funktion f ist achsensymmetrisch zur y-Achse, wenn f(-x) = f(x) ist. Die Funktion f heißt gerade.
  • Der Graph einer Funktion f ist punktsymmetrisch zum Ursprung des Koordinatensystems, wenn f(-x) = - f(x) ist. Die Funktion f heißt ungerade.

Im folgenden Video siehst du je ein Beispiel einer Polynomfunktion zur Achsensymmetrie und zur Punktsymmetrie und es wird ausführlich erklärt, wie du dies durch Rechnung überprüfen kannst.

>



zurück zu Eigenschaften von Funktionen