Symmetrie: Unterschied zwischen den Versionen
Zeile 36: | Zeile 36: | ||
}} | }} | ||
− | Im folgenden Video siehst du | + | Im folgenden Video siehst du je ein Beispiel einer Polynomfunktion zur Achsensymmetrie und zur Punktsymmetrie und es wird ausführlich erklärt, wie du dies durch Rechnung überprüfen kannst. |
<center>>{{#ev:youtube |gL3ea3Nbz_Y|350}}</center> | <center>>{{#ev:youtube |gL3ea3Nbz_Y|350}}</center> |
Version vom 3. Januar 2012, 18:06 Uhr
zurück zu Eigenschaften von Funktionen
Schau dir diesen Video an:
Im folgenden Applet ist ein Punkt A auf der Normalparabel an der y-Achse gespiegelt. Der Spiegelpunkt ist A'. 2. Überprüfe indem du den Punkt A bewegst, ob der Funktionsgraph der Quadratfunktion achsensymmetrisch zur y-Achse ist.
Im folgenden Applet ist ein Punkt A auf der Kubikparabel am Usprung gespiegelt. Der Spiegelpunkt ist A'. 3. Überprüfe indem du den Punkt A bewegst, ob der Funktionsgraph der Kubikfunktion punktsymmetrisch zum Ursprung ist.
|
Merke:
|
Im folgenden Video siehst du je ein Beispiel einer Polynomfunktion zur Achsensymmetrie und zur Punktsymmetrie und es wird ausführlich erklärt, wie du dies durch Rechnung überprüfen kannst.
zurück zu Eigenschaften von Funktionen