Wurzelfunktion allgemeine Wurzelfunktion: Unterschied zwischen den Versionen
Zeile 16: | Zeile 16: | ||
− | {{ | + | {{Arbeiten|NUMMER=15| ARBEIT= |
Im folgenden Applet ist über der Seitenlänge <math>a</math> eines Würfels das Volumen <math>V</math> aufgetragen. Der Punkt V hat die Koordinaten (<math>a, V</math>). Mit dem Schieberegler kannst du verschiedene Werte für <math>a</math> einstellen. | Im folgenden Applet ist über der Seitenlänge <math>a</math> eines Würfels das Volumen <math>V</math> aufgetragen. Der Punkt V hat die Koordinaten (<math>a, V</math>). Mit dem Schieberegler kannst du verschiedene Werte für <math>a</math> einstellen. | ||
Version vom 28. April 2012, 14:42 Uhr
Startseite --- Die Wurzelfunktion - Übungen - Anwendungen --- Die allgemeine Wurzelfunktion - Übungen - Anwendungen --- Die Wurzelfunktion als Umkehrfunktion
Bei den folgenden Aufgaben bearbeitest du den Zusammenhang zwischen dem Volumen eines Würfels und seiner Seitenlänge.
Ein Würfel mit der Seitenlänge hat das Volumen
.
Ist die Seitenlänge , dann ist also das Volumen
.
Umgekehrt ist dann für einen Würfel mit Volumen die zugehörige Seitenlänge
.
Im folgenden Applet ist über der Seitenlänge
a) Welches Volumen |
Es ist

Man schreibt auch dafür
Merke:
Die Gleichung ![]() Fehler beim Parsen(Lexikalischer Fehler): \sqrt[n]{a}\ heißt die n-te Wurzel aus a. |
a) Setze verschiedene Werte für das Würfelvolumen V ein, und berechne welche Werte sich für die Seitenlänge a ergeben. Trage die Ergebnisse in eine Wertetabelle ein. b) Erstelle ein V-a-Diagramm (V nach rechts, a nach oben antragen!) |
Merke:
Man definiert für jede natürliche Zahl n die allgemeine Wurzelfunktion n-ten Grades oder n-te Wurzelfunktion Fehler beim Parsen(Lexikalischer Fehler): f: x \rightarrow \sqrt[n]{x}\ mit |
Gib für die Würfelaufgabe die zugehörige Funktion an. |
|
Betrachte nun die Wurzelfunktionen im folgenden Applet:
|
Du hast nun die allgemeine Wurzelfunktion kennengelernt. Als nächstes kannst du wählen, ob du Übungen oder Anwendungen machen willst.