Wurzelfunktion allgemeine Wurzelfunktion: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 17: Zeile 17:
  
 
{{Arbeiten|NUMMER=15| ARBEIT=
 
{{Arbeiten|NUMMER=15| ARBEIT=
Im folgenden Applet ist über der Seitenlänge <math>a</math> eines Würfels das Volumen <math>V</math> aufgetragen. Der Punkt V hat die Koordinaten (<math>a, V</math>). Mit dem Schieberegler kannst du verschiedene Werte für <math>a</math> einstellen.
+
Im folgenden Applet wird der Seitenlänge <math>a</math> eines Würfels das Volumen <math>V</math> zugeordnet. <br>Der Punkt P hat die Koordinaten (<math>a| V</math>). Mit dem Schieberegler kannst du verschiedene Werte für <math>a</math> einstellen.
 +
<br>
  
 
<ggb_applet width="522" height="647"  version="4.0" ggbBase64="UEsDBBQACAAIAKZOWUAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACmTllAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1a72/bNhP+3P0VhD5t72pb1C/bhdOhSZqmQLYOSFcM+zCAlmiZtURpIu04xf74HUlJlq24i5J6r5OgKUnxyOM9z93x5Hjy0zpN0IoWgmX8xMJ920KUh1nEeHxiLeWsN7J+ev3dJKZZTKcFQbOsSIk8sTwlySJYQhwSeBHtRREJe97UD3vjIPB6MzsYjgkms3EUWgitBXvFs19ISkVOQnodzmlKrrKQSK14LmX+ajC4ubnpV6r6WREP4njaX4vIQnBMLk6ssvMKtttadONqcce28eD3n6/M9j3GhSQ8pBZSJizZ6+9eTG4Yj7IbdMMiOT+xfBfMmFMWz8Gm4dC30EAJ5QBITkPJVlTA0sZQ2yzT3NJihKv5F6aHktocC0VsxSJanFh23/GdkWvj0QgAcTzftVBWMMplKYtLnYNqt8mK0RuzreppjZ6FZJYlU6J2RH//jRzbsdFL1WDTONAEgZmyzTPbNY1jGs80vpHxzHLPiHpGxjMyHpxxxQSbJvTEmpFEAIKMzwpgrx4LeZtQfZ7ywcZ6/BJsEuwLCLs24Gsgh+e2/VL9BvDrqYnBtpG4oVUWy45KK5W+49xfpfMoQ91KJ3a9tk7H32Nm8BWlxu772In9BrSgSv/Tvy2N7tfM3NVoxo9TGHj/iYmTQRUqkzI6kJgr2dJ7JE2Fihd3jPyxcnuMfIiNYAhe7iM8hmboIIgGhH3k+TDEIxSodojcIUx4yEUjpOSwi3Rw+CP4zxvqzQLkw2bq6RBiEmFQ5CHfRVjHlIcgkpCOS4hRxwUJ30c+LFLqsaO2cAPkBTByR8iDM6qQHGIQdGEhjEG9g1yMXLUYD5EToEDthz0V6sFIHR22dFBgowCrDSGqIaJNNIP8CLnKmqCEi/F8KbcgCtOo6sosr7kAachHm6xn8tNWUnwxSciUJnBPXCsmEVqRREWEVjTLuEQViY55Fhckn7NQXFMpYZVAn8mKXBFJ1xcgLSrdWjbMuPi1yORZlixTLhAKs8Suz5wluNF36lPDwG1MeM0JvzERNPrDO/VmMIOWgoL+rBCVOImi90pikxoAyQ88uT0tKFnkGds2YzLQV86ELsOERYzwT+CsSovCBdU3kEpX1Q0U4HF1kKyIrm8FeDBa/0GLDKAd993mz8hCt2bGHzl9u/EDMyIkKvRcd3vNENbsmXIDo5muaoLImta2x4WK69JuNXgvTrNk80hbf0ZyuSx06QCpsVA2veFxQrWH6GQL93K4mGbr6zJtmr0+3uYwss0BprFGHUFmcHy4kOOynZpWy6iT1VK2lrG1hF35GovqeTx2tIRup6bVUuC85milpbgyE9uVGiZ0PrOtrajRnq9u+SVn8qoaSBYuSkuxkf9lmU7pxn+UwDkzJYmptba14MNpmQx2vHCyoAWnSen0wPcyWwoTw414iGjIUhhuBTdRlP4GZzJPIxoXtJQniS7dDKh61m76c+ux3uqiyNL3fPUR/GXnAJNBdcqJCAuWK7dEU7goFnTjeRETBO6ZqLlORSmgEar7BACRCi2I36WcZ4WuziDtQKuCM6Ep1GJIahfky5QWLKyxJ7rMg0Mty3M7/dIDFfAom36GfLjDlx5oGZje46SIJPmcqOIQl65IbmmxBY3e7ecsKhWXciJRVSVKGdfbpGStQ41MBWRKCWU1UME3ZbU5WJlpoCZRRTuscIKx6t3CWl91ZmzdABQwYl/AJ8iWMZtgkZDFF1CqCh3Rsoxd3blkUUR5fVrCwXs0B5DIcmMugjuEGmevl+Zgvs4aDeZLYloU6URTg/3G+joZDV/ex4ZOLjUf9j35sDtYiO+ysIwJofiwSzZ0+6WRGrSxKlduBaB5uhNMW4it8wL4UccqcTiF17o1nO978hLZP1jbWA7+BeTTh4GsisDYNFPTPBTlDVIq/g6L1FkDKdIVqbPjQ0q3B0HqvELKfgBS58eDVBV93wqpMEtTwiPE9dvONY3Vc2tTfxNb5S1EsIosY+FSVhNTs1u5RwtEUe5WwTR9fP6zD4HhZqsHXBv0L26WCFPnsDRPWMhkDVaicul7LqHqofqOb1cuC0pzVVZ+4B8LwoX62MrIVDdaV8ZODWNnLcbCboyFR8JYbzeVBn3Hf2acnRnOzlucRd04i46EsyrKelWYPUPOzg1nb1qc0W6c0SPhbDfMnlZmbN/6b+v6CP0P2X0f7n7T6VoBvP0/l+4birCKIsWR6RykWLrYwPYjeix0F8dTPLn94cGxe7cHux8fit+7I8TPdA6C3+UdIftg7C6PB7s6br8Zdh0KwYvWBTXrdkHNjuSC6rXTn9vHz66uuDC0vWvRFnejLT4W2nYLi3HfHT430t4Z0i5bpM27kTY/EtJaBfxzJO1y31sX60YaOxLS6vzYe9YJ8mxfgvzcjbbPR0LbHffa03r3ug9pb/cVI4tupC2OhLTdzxF794407D851tqfcSTdWEuOhLU7MuQ9Q+0JstYuRtJurKVHwlqrgnxysdZ+1f3U/Ovdn9+7P3R9vf30L+Tc/df9b/B2i/d9cIj9fvCNPlrZ9vIPhZxnccZJcgVs7zj7J+Pst2/WTLQcnn/d4ZXz1IDxBwH6WGd39lbeuPrLsYH1MN7+ONDXd4KedwA9/w9B/zCbCSoVxkON8OiejBgmGumn/m7NQekYNL8bpL+kV37f/PU/UEsHCOq6RdLQBwAADC8AAFBLAQIUABQACAAIAKZOWUBFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgApk5ZQOq6RdLQBwAADC8AAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABoCAAAAAA=" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br>
 
<ggb_applet width="522" height="647"  version="4.0" ggbBase64="UEsDBBQACAAIAKZOWUAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACmTllAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1a72/bNhP+3P0VhD5t72pb1C/bhdOhSZqmQLYOSFcM+zCAlmiZtURpIu04xf74HUlJlq24i5J6r5OgKUnxyOM9z93x5Hjy0zpN0IoWgmX8xMJ920KUh1nEeHxiLeWsN7J+ev3dJKZZTKcFQbOsSIk8sTwlySJYQhwSeBHtRREJe97UD3vjIPB6MzsYjgkms3EUWgitBXvFs19ISkVOQnodzmlKrrKQSK14LmX+ajC4ubnpV6r6WREP4njaX4vIQnBMLk6ssvMKtttadONqcce28eD3n6/M9j3GhSQ8pBZSJizZ6+9eTG4Yj7IbdMMiOT+xfBfMmFMWz8Gm4dC30EAJ5QBITkPJVlTA0sZQ2yzT3NJihKv5F6aHktocC0VsxSJanFh23/GdkWvj0QgAcTzftVBWMMplKYtLnYNqt8mK0RuzreppjZ6FZJYlU6J2RH//jRzbsdFL1WDTONAEgZmyzTPbNY1jGs80vpHxzHLPiHpGxjMyHpxxxQSbJvTEmpFEAIKMzwpgrx4LeZtQfZ7ywcZ6/BJsEuwLCLs24Gsgh+e2/VL9BvDrqYnBtpG4oVUWy45KK5W+49xfpfMoQ91KJ3a9tk7H32Nm8BWlxu772In9BrSgSv/Tvy2N7tfM3NVoxo9TGHj/iYmTQRUqkzI6kJgr2dJ7JE2Fihd3jPyxcnuMfIiNYAhe7iM8hmboIIgGhH3k+TDEIxSodojcIUx4yEUjpOSwi3Rw+CP4zxvqzQLkw2bq6RBiEmFQ5CHfRVjHlIcgkpCOS4hRxwUJ30c+LFLqsaO2cAPkBTByR8iDM6qQHGIQdGEhjEG9g1yMXLUYD5EToEDthz0V6sFIHR22dFBgowCrDSGqIaJNNIP8CLnKmqCEi/F8KbcgCtOo6sosr7kAachHm6xn8tNWUnwxSciUJnBPXCsmEVqRREWEVjTLuEQViY55Fhckn7NQXFMpYZVAn8mKXBFJ1xcgLSrdWjbMuPi1yORZlixTLhAKs8Suz5wluNF36lPDwG1MeM0JvzERNPrDO/VmMIOWgoL+rBCVOImi90pikxoAyQ88uT0tKFnkGds2YzLQV86ELsOERYzwT+CsSovCBdU3kEpX1Q0U4HF1kKyIrm8FeDBa/0GLDKAd993mz8hCt2bGHzl9u/EDMyIkKvRcd3vNENbsmXIDo5muaoLImta2x4WK69JuNXgvTrNk80hbf0ZyuSx06QCpsVA2veFxQrWH6GQL93K4mGbr6zJtmr0+3uYwss0BprFGHUFmcHy4kOOynZpWy6iT1VK2lrG1hF35GovqeTx2tIRup6bVUuC85milpbgyE9uVGiZ0PrOtrajRnq9u+SVn8qoaSBYuSkuxkf9lmU7pxn+UwDkzJYmptba14MNpmQx2vHCyoAWnSen0wPcyWwoTw414iGjIUhhuBTdRlP4GZzJPIxoXtJQniS7dDKh61m76c+ux3uqiyNL3fPUR/GXnAJNBdcqJCAuWK7dEU7goFnTjeRETBO6ZqLlORSmgEar7BACRCi2I36WcZ4WuziDtQKuCM6Ep1GJIahfky5QWLKyxJ7rMg0Mty3M7/dIDFfAom36GfLjDlx5oGZje46SIJPmcqOIQl65IbmmxBY3e7ecsKhWXciJRVSVKGdfbpGStQ41MBWRKCWU1UME3ZbU5WJlpoCZRRTuscIKx6t3CWl91ZmzdABQwYl/AJ8iWMZtgkZDFF1CqCh3Rsoxd3blkUUR5fVrCwXs0B5DIcmMugjuEGmevl+Zgvs4aDeZLYloU6URTg/3G+joZDV/ex4ZOLjUf9j35sDtYiO+ysIwJofiwSzZ0+6WRGrSxKlduBaB5uhNMW4it8wL4UccqcTiF17o1nO978hLZP1jbWA7+BeTTh4GsisDYNFPTPBTlDVIq/g6L1FkDKdIVqbPjQ0q3B0HqvELKfgBS58eDVBV93wqpMEtTwiPE9dvONY3Vc2tTfxNb5S1EsIosY+FSVhNTs1u5RwtEUe5WwTR9fP6zD4HhZqsHXBv0L26WCFPnsDRPWMhkDVaicul7LqHqofqOb1cuC0pzVVZ+4B8LwoX62MrIVDdaV8ZODWNnLcbCboyFR8JYbzeVBn3Hf2acnRnOzlucRd04i46EsyrKelWYPUPOzg1nb1qc0W6c0SPhbDfMnlZmbN/6b+v6CP0P2X0f7n7T6VoBvP0/l+4birCKIsWR6RykWLrYwPYjeix0F8dTPLn94cGxe7cHux8fit+7I8TPdA6C3+UdIftg7C6PB7s6br8Zdh0KwYvWBTXrdkHNjuSC6rXTn9vHz66uuDC0vWvRFnejLT4W2nYLi3HfHT430t4Z0i5bpM27kTY/EtJaBfxzJO1y31sX60YaOxLS6vzYe9YJ8mxfgvzcjbbPR0LbHffa03r3ug9pb/cVI4tupC2OhLTdzxF794407D851tqfcSTdWEuOhLU7MuQ9Q+0JstYuRtJurKVHwlqrgnxysdZ+1f3U/Ovdn9+7P3R9vf30L+Tc/df9b/B2i/d9cIj9fvCNPlrZ9vIPhZxnccZJcgVs7zj7J+Pst2/WTLQcnn/d4ZXz1IDxBwH6WGd39lbeuPrLsYH1MN7+ONDXd4KedwA9/w9B/zCbCSoVxkON8OiejBgmGumn/m7NQekYNL8bpL+kV37f/PU/UEsHCOq6RdLQBwAADC8AAFBLAQIUABQACAAIAKZOWUBFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgApk5ZQOq6RdLQBwAADC8AAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABoCAAAAAA=" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br>

Version vom 28. April 2012, 13:44 Uhr

Startseite --- Die Wurzelfunktion - Übungen - Anwendungen --- Die allgemeine Wurzelfunktion - Übungen - Anwendungen --- Die Wurzelfunktion als Umkehrfunktion


Wuerfel.jpg

Bei den folgenden Aufgaben bearbeitest du den Zusammenhang zwischen dem Volumen eines Würfels und seiner Seitenlänge.

Ein Würfel mit der Seitenlänge a hat das Volumen  V = a^3.

Ist die Seitenlänge a = 3 cm, dann ist also das Volumen  V = 27 cm^3.
Umgekehrt ist dann für einen Würfel mit Volumen  V= 27 cm^3 die zugehörige Seitenlänge a= 3 cm.



  Aufgabe 15  Stift.gif

Im folgenden Applet wird der Seitenlänge a eines Würfels das Volumen V zugeordnet.
Der Punkt P hat die Koordinaten (a| V). Mit dem Schieberegler kannst du verschiedene Werte für a einstellen.


a) Welches Volumen V ergibt sich für a = 1; 1,5; 2; 2,5?
b) Welchen Wert nimmt V für a = 3; 5; 10; 15 an?
c) Lies durch Variation des Schiebereglers ab für welche Werte a das Volumen V = 1,728; 2,744; 3,375; 4,096; 4,913; 9,261; 15,625; 17,576 ist.


a) a, 3,375; 8; 15,625
b) 27; 125; 1000; 3375
c) 1,2; 1,4; 1,5; 1,6; 1,7; 2,1; 2,5; 2,6


Es ist

 a = V^{\frac{1}{3}}

Man schreibt auch dafür

Fehler beim Parsen(Lexikalischer Fehler): a = \sqrt[3]{V}\


Maehnrot.jpg
Merke:

Die Gleichung  a = x^n hat für jede natürliche Zahl n und jede nicht negative reelle Zahl x als Lösung

 x = a^{\frac{1}{n}} oder Fehler beim Parsen(Lexikalischer Fehler): x = \sqrt[n]{a}\

Fehler beim Parsen(Lexikalischer Fehler): \sqrt[n]{a}\

heißt die n-te Wurzel aus a.


Stift.gif   Aufgabe

a) Setze verschiedene Werte für das Würfelvolumen V ein, und berechne welche Werte sich für die Seitenlänge a ergeben. Trage die Ergebnisse in eine Wertetabelle ein.

b) Erstelle ein V-a-Diagramm (V nach rechts, a nach oben antragen!)

Dein Ergebnis kann so aussehen.
a) Wuerfel V-a-Tabelle.jpg
b) Wuerfel V-a-graph.jpg
Verbindet man die Punkte, dann erhält man diesen Graphen:

Wuerfel V-a-graph 2.jpg


Maehnrot.jpg
Merke:

Man definiert für jede natürliche Zahl n die allgemeine Wurzelfunktion n-ten Grades oder n-te Wurzelfunktion

Fehler beim Parsen(Lexikalischer Fehler): f: x \rightarrow \sqrt[n]{x}\

mit  x \in R^+_0 und n \in N.


  Aufgabe 1  Stift.gif

Gib für die Würfelaufgabe die zugehörige Funktion an.


f:V \rightarrow \sqrt[3]{V} mit V \in R^+_0


  Aufgabe 2  Stift.gif
  1. Zeichne für n = 1, 2, 3, 4, 5, 6 die Graphen der n-ten Wurzelfunktion Fehler beim Parsen(Lexikalischer Fehler): f: x \rightarrow \sqrt[n]{x}\
  1. Welche Punkte haben alle Graphen gemeinsam?


1. Stelle mit dem Schieberegler die passende Wurzelfunktion ein.

2. (0;0 und (1;1)


  Aufgabe 3  Stift.gif

Betrachte nun die Wurzelfunktionen im folgenden Applet:
Variiere mit dem Schieberegler n.

  1. Was ist der Unterschied zu Aufgabe 2?
  2. Wieso ist dies möglich?


  1. Für ungerade n ist der Funktionsgraph auch für negative x gezeichnet.
  2. Es ist (-3)^3=(-3)(-3)(-3)=-27 und damit \sqrt[3]{-27}\ = -3 oder allgemein  (-a)^3=-a^3 und damit \sqrt[3]{-a^3}\ = -a , also ist bei ungeraden Exponenten n auch die n-te Wurzel aus einer negativen Zahl erklärt.



Du hast nun die allgemeine Wurzelfunktion kennengelernt. Als nächstes kannst du wählen, ob du Übungen oder Anwendungen machen willst.