Rationale Funktionen Polstellen: Unterschied zwischen den Versionen
Zeile 40: | Zeile 40: | ||
e) <math>l</math> mit <math> l(x) = \frac{1}{(x-3)(x+2)}</math> | e) <math>l</math> mit <math> l(x) = \frac{1}{(x-3)(x+2)}</math> | ||
+ | |||
+ | f) <math>m</math> mit <math> m(x) = \frac{1}{(x-3)}+\frac{1}{x}</math> | ||
}} | }} | ||
Zeile 54: | Zeile 56: | ||
e) x = -2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<-2): <math>l(x) \rightarrow \infty</math>; Annäherung von rechts (x>-2): <math> f(x) \rightarrow -\infty</math><br> | e) x = -2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<-2): <math>l(x) \rightarrow \infty</math>; Annäherung von rechts (x>-2): <math> f(x) \rightarrow -\infty</math><br> | ||
+ | :x = 3; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3): <math>l(x) \rightarrow -\infty</math>; Annäherung von rechts (x>3): <math> f(x) \rightarrow \infty</math> | ||
+ | |||
+ | e) x = 0; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<-2): <math>l(x) \rightarrow -\infty</math>; Annäherung von rechts (x>-2): <math> f(x) \rightarrow \infty</math><br> | ||
:x = 3; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3): <math>l(x) \rightarrow -\infty</math>; Annäherung von rechts (x>3): <math> f(x) \rightarrow \infty</math> | :x = 3; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3): <math>l(x) \rightarrow -\infty</math>; Annäherung von rechts (x>3): <math> f(x) \rightarrow \infty</math> | ||
}} | }} |
Version vom 5. April 2013, 14:26 Uhr
Die Funktion ist für
nicht definiert. Wie verhält sie sich in der Umgebung von
? Je kleiner
betragsmäßig wird, desto größer wird der Betrag von
. Zeigt eine Funktion für einen x-Wert ein solches Verhalten, dann ist der x-Wert eine Definitionslücke und man bezeichnet diese Stelle als Polstelle.
Ist an einer Definitionslücke
dann ist die Definitionslücke |
Beispiele:
1. Die Funktion hat für
einen Pol 1. Ordnung (
ist einfache Nullstelle des Nenners).

Nähert man sich von links an, also mit
, dann streben die Funktionswerte nach
; nähert man sich von rechts an, also
mit
, dann streben die Funktionswerte nach
.
hat an
eine Polstelle mit Vorzeichenwechsel. Die Gerade
ist senkrechte Asymptote des Graphen von
.
2. Die Funktion hat für
einen Pol 2. Ordnung (
ist zweifache Nullstelle des Nenners).

Nähert man sich von links oder von rechts an, also mit
oder
, dann streben die Funktionswerte in beiden Fällen nach
.
hat an
eine Polstelle ohne Vorzeichenwechsel. Die Gerade
ist senkrechte Asymptote des Graphen von
.
Man kann allgemein für eine gebrochen-rationale Funktion Ist n gerade, dann hat die Funktion Ist n ungerade, dann hat die Funktion Die Ordnung der Polstelle |
Ermittle bei den gegebenen Funktionen jeweils die Polstelle(n) der Funktion und beschreibe das Vorzeichenverhalten der Funktion bei Annäherung an die Polstelle(n). a) b) c) d) e) f) |
Ordne die Polstellen und die angegebenen Funktionen |
keine Polstelle