Rationale Funktionen Indirekte Proportionalitaet: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „Eine Tafel Schokolade mit 24 Stücken soll auf Kinder verteilt werden. Wie viele Stückchen bekommt jedes Kind? x bezeichne die Anzahl der Kinder und y die Anzah…“)
 
 
(8 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 3: Zeile 3:
 
x bezeichne die Anzahl der Kinder und y die Anzahl der Schokoladenstückchen, die jedes Kind bekommt. <br>
 
x bezeichne die Anzahl der Kinder und y die Anzahl der Schokoladenstückchen, die jedes Kind bekommt. <br>
  
<div style="margin:0;  border:2px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#F1F1FF; align:left;">
+
{{Arbeiten|NUMMER=1|
'''Aufgabe:''' Vervollständige die Tabelle:  
+
ARBEIT=
{| class="wikitable"
+
a) Vervollständige die Tabelle: http://wikis.zum.de/rsg/images/6/67/Tab-24-x.jpg
! x || 1 || 2 || 3 || 4  || 6 || 8 || 12 || 24
+
|-
+
| y ||  ||    ||    ||  ||  ||  ||    ||
+
|-
+
|}
+
</div>
+
  
{{Lösung versteckt|
+
b) Zeichne den Graph für dieses Beispiel.
{| class="wikitable"
+
! x || 1 || 2 || 3 || 4  || 6 || 8 || 12 || 24
+
|-
+
| y || 24 || 12 || 8 || 6 || 4 || 3 || 2 || 1
+
|-
+
|}
+
  
 +
c) Betrachte die Produkte <math>x\cdot y</math>. Was stellst du fest?
 
}}
 
}}
  
[[Tab-24-x-lsg.jpg|Lösung]]
+
{{Lösung versteckt|1=
<div style="margin:0;  border:2px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#F1F1FF; align:left;">
+
'''Aufgabe:''' Zeichne den Graph für dieses Beispiel.<br>
+
</div>
+
[[24-x.jpg|Lösung]]
+
  
Betrachte die Produkte x*y, so stellst du fest, dass x*y= 24 ist.
+
a) http://wikis.zum.de/rsg/images/3/31/Tab-24-x-lsg.jpg
  
<div style="margin:0;  border:2px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#F1E1FF; align:left;">
+
b) <br>  
Eine Zuordnung zwischen zwei Größen x und y heißt '''indirekt proportional''', wenn das Produkt x*y für alle Paare (x,y) stets konstant ist. </div>
+
http://wikis.zum.de/rsg/images/b/bc/24-x.jpg
  
 +
c) Es ist immer <math>x\cdot y = 24</math>.
 +
}}
  
In diesem Beispiel kann x nur eine natürliche Zahl zwischen 1 und 24 sein.
+
{{Merke|
  
Man kann die Funktion [[Bild:f24-x.jpg|center]] allgemein für alle rationalen Zahlen x, die ungleich Null sind, erklären. <br>
+
Eine Zuordnung zwischen zwei Größen x und y heißt '''indirekt proportional''', wenn das Produkt <math>x\cdot y </math> für alle Paare (x,y) stets konstant ist, also <math>x\cdot y = m</math>.
Der Graph dieser Funktion schaut dann so aus: [[bild:f24-x-graph.jpg|center]]<br>
+
}}
 +
 
 +
 
 +
In diesem Beispiel ist x eine natürliche Zahl zwischen 1 und 24.
 +
 
 +
Man kann die Funktion <math>f: x \rightarrow \frac{24}{x}</math> allgemein für alle reellen Zahlen <math>x \not = 0</math> erklären. <br>
 +
Der Graph dieser Funktion schaut dann so aus: <br>
 +
<center>http://wikis.zum.de/rsg/images/6/64/F24-x-graph.jpg</center><br>
  
 
<center>Der Graph einer indirekten Proportionalität heißt '''Hyperbel'''.</center>
 
<center>Der Graph einer indirekten Proportionalität heißt '''Hyperbel'''.</center>
  
  
 +
{{Merke|
 +
Die Funktion <math>f:x \rightarrow \frac{m}{x}</math> mit einer reellen Zahl <math>m \not = 0</math> heißt '''indirekte Proportionalität''' oder '''indirekt proportionale Funktion'''.
 +
}}
 +
 +
 +
{{Arbeiten|NUMMER =2|
 +
ARBEIT=
 +
Bestimme die Definitionsmenge und die Wertemenge der Funktion <math>f:x \rightarrow \frac{24}{x}</math>.
 +
 +
Ist der Graph symmetrisch bezüglich des Koordinatensystems?
 +
}}
 +
 +
{{Lösung versteckt|1=
 +
Da x im Nenner steht, darf x nicht 0 sein, also ist die Definitionsmenge <math>R</math>\{<math>0</math>}.<br>
 
<div style="margin:0;  border:2px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#F1E1FF; align:left;">
 
<div style="margin:0;  border:2px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#F1E1FF; align:left;">
Die Funktion [[Bild:Fm_x_term.jpg|center]] mit einer rationalen Zahl m heißt '''indirekte Proportionalität''' oder indirekt proportionale Funktion.  
+
Eine solche Stelle, an der der Funktionsterm nicht definiert ist und in deren Nähe die Funktionswerte nach + Unendlich oder - Unendlich gehen, heißt '''Polstelle'''.
 
</div>
 
</div>
 +
<center>http://wikis.zum.de/rsg/images/6/64/F24-x-graph.jpg</center><br>
  
Was ist Definitionsmenge, Wertemenge? Ist der Graph symmetrisch?<br>
+
Aus dem Graph sieht man, dass 0 als Funktionswert nicht angenommen wird, ansonsten kommen alle reelle Zahlen als y-Werte vor, also ist die Wertemenge auch <math>R</math>\{<math>0</math>}.
[[Rationale Funktionen/Einführung/D und W rationale Funktion|Lösung]]
+
  
 +
Desweiteren sieht man, dass der Graph punktsymmetrisch zum Ursprung ist.
 +
}}
  
<div style="margin:0;  border:2px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#F1F1FF; align:left;">
 
'''Aufgaben:'''<br>
 
1. Stelle in dieser [http://www.rsg.rothenburg.de/wiki/images/4/47/Aufg_24-x-n.ggb GeoGebra-Datei] den Schieberegler für m so ein, dass es den Graphen von [[bild:f24-x.jpg|center]] zeigt.<br>
 
2. Beantworte die Fragen auf dieser [http://www.realmath.de/Neues/Klasse8/hyperbel/hyperbel.html Seite]
 
</div><br>
 
  
Der Funktionsterm von [[bild:f24-x.jpg|center]] ist ein Bruch. Nun kann im Zähler und Nenner eines Bruches auch die Variable x vorkommen. Deshalb definiert man allgemein:
+
{{Arbeiten|NUMMER = 3|
 +
ARBEIT=
 +
a) Stelle in diesem Applet
 +
<ggb_applet width="604" height="484"  version="4.2" ggbBase64="UEsDBBQACAAIAM+ChkIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAM+ChkIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVhtj9s2DP58/RWEP21ALrH8lqRIWrQdihW4dsWuG4Z9k20lUc9vsOTEKfrjR0q241zvgq4tGlwiSyJF8iH1SL7V8zbPYC9qJcti7bCp64AokjKVxXbtNHpzvXCeP3uy2opyK+Kaw6asc67XTjD1nJMe9qYsJGWZrh13GQufifm1u0i962CRhtdLP/CvN36w2KQx99I4cABaJZ8W5TueC1XxRNwmO5HzmzLh2qy507p6OpsdDodpb31a1tvZdhtPW5U6gJ4Xau10D09xuTOlg2/EPddls3/e3tjlr2WhNC8S4QBF1chnT65WB1mk5QEOMtW7tRMxjGwn5HaHYYY+ejojoQpjrUSi5V4oVB11Tcw6rxwjxguav7JPkA3hOJDKvUxFjfhMvWi+nPuLMPLcJQtd34GylqLQnSzrbM761VZ7KQ52WXoyFtExXZZZzGlFCJfw+TN4rufChBpmGw+bKLJTrh1zfdt4tglsE1qZwKoHVjSwMoGVCdDNvVQyzsTa2fBMIYiy2NSYwKGv9DETxqVu4AQAm2BYSn5CYbTngEUdfZ+4k8A1Xxv2KMbFKEZGAXwGRp6bxgfymRnfqQm6bmS7c9Mwtxtd0I8BKfrOMPw+DH8cBq4+oW/0SChsZFXXzUWjdn5ks7cYucHXAed9V4xDhCy6Z897LLpLoNpwLmE62AtHiIbuxPyZ7xcW/Ush3rf4KKD/wyBB8XNDDNzl/IcHiUU78d1gEgUPG527Z7zSk4ptWdf+FOxXs571Vp1DoHYk220fLXJFLvpLw37AIESGiOZIViGwJTZzYgoPWAhBiF22gIjaOfhEDgH4sACSYz4YjgsX+BMY4oggxLVocO4aIgE/gNAHZpgxAEQBDLsiJp6PEmEIISqRdUZm/QiCCDv+AgJ0kHh1Tvzlox720bgHPgOfdNkcvAgiD+bEzSwgyo4W5Dsu6kHkQkSqSM5IzJaUUWMBPkWDO68qlbTgunR0ZdWQFYOjLKpGd9h140me9jjq8p54WiZ3LwewuxnBlR6L4dl0OgHtWXV2QF6tMh6LDK8Rt1QJAHueEbEYC5uy0NBXgWfHtjWvdjJRt0Jr1FLwke/5DdeifY3SqrdtTJtzeyWaJJOp5MXfWCa0BC0IwzFOVNkf40EYWStJWdbp7VFh7UD7r6hL2hDeNBx/HDh2M2w5XY4+eBqphFPNe97UG38YTh0fnmPLLmixH0LjrVA9/Nuadl0HLHXeqJdldhqqSlnoV7zSTW3uZMjNNQX1othmwmBr2B5vN8ldXLa3FlTfrvXhWAkqCuNAvH1VZmUNuCc9inLbtbFtjQx5Nki5RsY1Em6fJZkO82zpGQnTxrY1Uph261oXKevDZG5vRip7VXTO9rSpmbXTOtAUUt/YHpaoTO66UJlVeNfkMdbbUMMo8Ju0Nzt7iz03wx40c/whZlaze4W4uhN1ITJbbgVmvCkbZet/qOGrVaPEe653L4r0T7HFvfueE31qtGZFjUW7H0Uic1S04x3EnNL/F3pvR1OxrUUnzzNzWbYJMLPuuPi/GDZLva7L/E2x/4C1dc/V1ayPZ6WSWlZUwhAjn9+JU5WmUnE8DdKxHgavMIqEmAmh04SrA7zRu7I292Hc3LhP4UVVywz5FIuWdnUmcrwJgzalWzS5qGUypCw3l2x0sOliGHJN6YIy/ogMdC/NJyRx+pHiBp5VO05Xc9aVMD+K+gwms9rbMu0Nd2YzutNDLpF8r3Ez5bwlSsEFY1VmjcbXGkxMcXqtsa51JIWHMb00taRLD0ekKvMOtpHtCF0ETH7CUjqvi9Mu00icd/imoAwV6G7Tm4ffZZqKYnCXF1hKJiFIgZWt80oIu0UGxQqjN2QzKoIuL5ShtqrRFi3SIbzJ8YBo6RjJf2l/hTXkMIPWnhPn+dw0hakHZ6T6I7PnXszeH5uNEprgnkcGbC96MLdf0NgIYP8SwJdgAgy2h8mixAxKXwPSN2Hk0Qn4XSjRG9/RnCYXULpfUrSFvq6ovqWExwjPxgxj7gXd/wme/QdQSwcIoZt6JPAFAADXEAAAUEsBAhQAFAAIAAgAz4KGQtY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADPgoZCoZt6JPAFAADXEAAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAIcGAAAAAA==" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br>
 +
den Schieberegler für m so ein, dass der Graphen der Funktion <math>f:x \rightarrow \frac{24}{x}</math> angezeigt wird.<br>
  
 +
b) Beschreibe wie du den Graphen der Funktion <math>f:x \rightarrow \frac{24}{x}</math> aus dem Graphen der Funktion <math>f:x \rightarrow \frac{1}{x}</math> erhältst?<br>
  
<div style="margin:0; border:2px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#F1E1FF; align:left;">
+
c) Beantworte die Fragen auf dieser [http://www.realmath.de/Neues/Klasse8/hyperbel/hyperbel.html Seite] (wird im Mozilla Firefox nicht alles angezeigt, also mit Internet Explorer öffnen!).
  Ist der Funktionsterm der Funktion f ein Bruch und stehen in Nenner und/oder Zähler Terme mit der Variablen x, zum Beispiel [[bild:bspl-rationale-funktion.jpg|center]] oder allgemeiner [[bild:bspl-rationale-funktion2.jpg|center]] so heißt diese Funktion '''rationale Funktion'''.
+
<br>
</div>
+
}}
 +
 
 +
{{Lösung versteckt|1=
 +
a) m = 24
 +
 
 +
b) Jeder y-Wert der Funktion <math>f:x \rightarrow \frac{1}{x}</math> wird mit 24 multiplilziert. Der Graph von <math>f:x \rightarrow \frac{1}{x}</math> wird in y-Richtung um den Faktor 24 gestreckt.
 +
}}
 +
 
 +
Der Funktionsterm von http://wikis.zum.de/rsg/images/0/05/F24-x.jpg ist ein Bruch, in dessen Nenner die Variable <math>x</math> vorkommt. Kommen im Nenner der Funktion <math>f</math> auch andere Terme mit <math>x</math> vor, z.B.
 +
http://wikis.zum.de/rsg/images/e/eb/Bspl-rationale-funktion.jpg oder http://wikis.zum.de/rsg/images/d/dd/Bspl-rationale-funktion2.jpg dann spricht man von '''rationalen Funktionen'''.
 +
 
 +
----
 +
 
 +
Internetlinks:
 +
 
 +
Mehr über indirekte Proportionalität wiederholst du in [http://rfdz.ph-noe.ac.at/fileadmin/Mathematik_Uploads/Medienvielfalt/Medienvielfalt3/lernpfad_direktes_indirektes_verhaeltnis/iv_dv_final/index.htm diesem Lernpfad].
  
[[Rationale Funktionen/Einführung/Hefteintrag|Hefteintrag]]
+
Alles über [http://www.matheprisma.uni-wuppertal.de/Module/Hyperbel/ Hyperbeln]

Aktuelle Version vom 7. April 2013, 06:42 Uhr

Eine Tafel Schokolade mit 24 Stücken soll auf Kinder verteilt werden. Wie viele Stückchen bekommt jedes Kind?

x bezeichne die Anzahl der Kinder und y die Anzahl der Schokoladenstückchen, die jedes Kind bekommt.

  Aufgabe 1  Stift.gif

a) Vervollständige die Tabelle: http://wikis.zum.de/rsg/images/6/67/Tab-24-x.jpg

b) Zeichne den Graph für dieses Beispiel.

c) Betrachte die Produkte x\cdot y. Was stellst du fest?


Nuvola apps kig.png   Merke


Eine Zuordnung zwischen zwei Größen x und y heißt indirekt proportional, wenn das Produkt x\cdot y für alle Paare (x,y) stets konstant ist, also x\cdot y = m.


In diesem Beispiel ist x eine natürliche Zahl zwischen 1 und 24.

Man kann die Funktion f: x \rightarrow \frac{24}{x} allgemein für alle reellen Zahlen x \not = 0 erklären.
Der Graph dieser Funktion schaut dann so aus:

http://wikis.zum.de/rsg/images/6/64/F24-x-graph.jpg

Der Graph einer indirekten Proportionalität heißt Hyperbel.


Nuvola apps kig.png   Merke

Die Funktion f:x \rightarrow \frac{m}{x} mit einer reellen Zahl m \not = 0 heißt indirekte Proportionalität oder indirekt proportionale Funktion.


  Aufgabe 2  Stift.gif

Bestimme die Definitionsmenge und die Wertemenge der Funktion f:x \rightarrow \frac{24}{x}.

Ist der Graph symmetrisch bezüglich des Koordinatensystems?


Da x im Nenner steht, darf x nicht 0 sein, also ist die Definitionsmenge R\{0}.

Eine solche Stelle, an der der Funktionsterm nicht definiert ist und in deren Nähe die Funktionswerte nach + Unendlich oder - Unendlich gehen, heißt Polstelle.

http://wikis.zum.de/rsg/images/6/64/F24-x-graph.jpg

Aus dem Graph sieht man, dass 0 als Funktionswert nicht angenommen wird, ansonsten kommen alle reelle Zahlen als y-Werte vor, also ist die Wertemenge auch R\{0}.

Desweiteren sieht man, dass der Graph punktsymmetrisch zum Ursprung ist.


  Aufgabe 3  Stift.gif

a) Stelle in diesem Applet


den Schieberegler für m so ein, dass der Graphen der Funktion f:x \rightarrow \frac{24}{x} angezeigt wird.

b) Beschreibe wie du den Graphen der Funktion f:x \rightarrow \frac{24}{x} aus dem Graphen der Funktion f:x \rightarrow \frac{1}{x} erhältst?

c) Beantworte die Fragen auf dieser Seite (wird im Mozilla Firefox nicht alles angezeigt, also mit Internet Explorer öffnen!).


a) m = 24

b) Jeder y-Wert der Funktion f:x \rightarrow \frac{1}{x} wird mit 24 multiplilziert. Der Graph von f:x \rightarrow \frac{1}{x} wird in y-Richtung um den Faktor 24 gestreckt.

Der Funktionsterm von http://wikis.zum.de/rsg/images/0/05/F24-x.jpg ist ein Bruch, in dessen Nenner die Variable x vorkommt. Kommen im Nenner der Funktion f auch andere Terme mit x vor, z.B. http://wikis.zum.de/rsg/images/e/eb/Bspl-rationale-funktion.jpg oder http://wikis.zum.de/rsg/images/d/dd/Bspl-rationale-funktion2.jpg dann spricht man von rationalen Funktionen.


Internetlinks:

Mehr über indirekte Proportionalität wiederholst du in diesem Lernpfad.

Alles über Hyperbeln