Trigonometrische Funktionen: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
{{Kasten|
+
{{Kasten1000| BREITE =100%|  
'''Informationen für den Lehrer'''
+
ÜBERSCHRIFT =Informationen für den Lehrer| INHALT1=Hier sollen sich die Schüler mit der Variation von Parametern in Sinus- und Kosinusfunktionen beschäftigen und deren Auswirkungen erarbeiten und beschreiben können.|
 +
INHALT2=Ziele| INHALT2a='''Bekannt sind'''
  
Hier sollen sich die Schüler mit der Variation von Parametern in Sinus- und Kosinusfunktionen beschäftigen und deren Auswirkungen erarbeiten und beschreiben können.
+
*Darstellungsformen von Funktionen
 +
*Kenntnis der Auswirkung von Variationen in den Darstellungsformen von linearen und quadratischen Funktionen
 +
*Eigenschaften der trigonometrischen Funktionen | INHALT2b='''Dabei lernt man'''
  
[[Trigonometrische Funktionen/Didaktischer Kommentar|Didaktischer Kommentar]]  
+
*Erkennen der Auswirkung der Variation von Parametern im Funktionsterm auf die Graphen der Sinus- und Kosinusfunktion, und umgekehrt.
}}
+
*Unterschiedliche Variablenbezeichnungen identifizieren können | INHALT3=[[Trigonometrische Funktionen/Didaktischer Kommentar|Didaktischer Kommentar]]}}  
  
 
 
=== Hellsehen ===
 
=== Hellsehen ===
 
{|
 
{|

Version vom 27. Dezember 2008, 10:23 Uhr

Nuvola apps edu miscellaneous.png
Informationen für den Lehrer

Hier sollen sich die Schüler mit der Variation von Parametern in Sinus- und Kosinusfunktionen beschäftigen und deren Auswirkungen erarbeiten und beschreiben können.

Ziele

Bekannt sind

  • Darstellungsformen von Funktionen
  • Kenntnis der Auswirkung von Variationen in den Darstellungsformen von linearen und quadratischen Funktionen
  • Eigenschaften der trigonometrischen Funktionen

Dabei lernt man

  • Erkennen der Auswirkung der Variation von Parametern im Funktionsterm auf die Graphen der Sinus- und Kosinusfunktion, und umgekehrt.
  • Unterschiedliche Variablenbezeichnungen identifizieren können
  Pfeil.gif Didaktischer Kommentar

Inhaltsverzeichnis

Hellsehen

Wäre es nicht toll, wenn du hellsehen könntest? Wenn du den Graphen eines Funktionsterms auch ohne Wertetabelle direkt zeichnen könntest? Wenn du aus dem Graphen einer Funktion deren Term ablesen könntest?

Für die linearen und die quadratischen Funktionen beherrscht du diese Kunst wahrscheinlich schon. Dann wirst du vieles von Deinem Wissen auf die allgemeine Sinus- und Kosinusfunktion übertragen können.


Einfluss der Parameter

Wiederholung:

Hefteintrag: Am besten verwendest du hierfür dein Heft im Querformat. Formuliere eine Überschrift und übernehme alle mit gelb gekennzeichneten Texte. Natürlich darfst du dir aber auch noch zusätzlich Notizen machen.


Maehnrot.jpg
Merke:

Die allgemeine Sinusfunktion lautet

  x\rightarrow a\cdot\sin(b\cdot x+c)+d  .

Entsprechend lautet die allgemeine Kosinusfunktion

  x \rightarrow a\cdot \cos ( b\cdot x + c ) + d  .

Dabei sind \ a,b,c,d Parameter, die auf das Aussehen des Funktionsgraphen Einfluss nehmen. Im Folgenden seien \ a,b,c,d \in \R und a,b\neq 0.

 \rightarrow Hinweis: Bei den GeoGebra-Applets ist die \ x-Achse mit Vielfachen von  \pi beschriftet. Indem man die \ x-Achse mit der rechten Maustaste anklickt und "Eigenschaften" wählt, kann man auf die Einheit cm umstellen.


Arbeiten in Expertenteams

{{{1}}}


Einfluss von  \ a Einfluss von  \ b Einfluss von  \ c Einfluss von  \ d

Untersuche hier den Einfluss von

 \ a

auf die Graphen der Funktionen

 x \rightarrow a\cdot \sin x

und

 x \rightarrow a\cdot \cos x  .

Untersuche hier den Einfluss von

 \ b

auf die Graphen der Funktionen

 x \rightarrow \sin ( b\cdot x )

und

 x \rightarrow \cos ( b\cdot x ) .

Untersuche hier den Einfluss von

 \ c

auf die Graphen der Funktionen

 x \rightarrow \sin ( x + c )

und

 x \rightarrow \cos ( x + c ) .

Untersuche hier den Einfluss von

 \ d

auf die Graphen der Funktionen

 x \rightarrow \sin x + d

und

 x \rightarrow \cos x + d .

Arbeiten in Expertenteams

{{{1}}}

Sinus und Kosinus

  Aufgabe   Stift.gif

Wie hängen die Sinus- und die Kosinusfunktion zusammen? Erstelle die Graphen der Funktionen \,\!\sin(x+\frac{\pi}{2}) und \,\!\cos(x) und betrachte sie! Was fällt dir auf?

Lösung:

Ja genau, die Graphen der beiden Funktionen sind identisch. Genauer gesagt:

Maehnrot.jpg
Merke:

Man erhält den Graphen der Kosinusfunktion indem man den Graphen der Sinusfunktion um \frac{\pi}{2} nach links verschiebt.

Deshalb verhält sich die allgemeine Kosinusfunktion bei Variation ihrer Parameter genauso wie die allgemeine Sinusfunktion.


Jetzt noch was zum Knobeln!!!

Du hast eine Menge über den Einfluss der einzelnen Parameter auf das Aussehen der Graphen heraus gefunden. Natürlich können aber die Parameter nicht nur einzeln variiert werden, sondern auch mehrere oder alle gleichzeitig.


  Aufgabe   Stift.gif
  1. In diesem Arbeitsblatt kannst du die verschiedenen Parameter variieren und die Auswirkungen auf den Graphen beobachten. Bearbeite auch die darunter gestellten Aufgaben.
  2. Funktionen erkennen
  3. Graphen erkennen

Bestimmung einer Funktionsgleichung aus dem Graphen

Man kann dem Graphen einer Funktion ansehen, wie eine mögliche zugehörige Funktionsgleichung lautet. Öffne das folgende Applet und klicke in das leere Kontrollkästchen.



Anwendungen in der Physik

Wiederholung: Frequenz und Amplitude

Oszilloskop.jpg
  Aufgabe   Stift.gif

Auf einem Oszilloskop sieht man obiges Bild.

  • Was kann man dort ablesen?
  • Wie erhält man aus dem Bild die nötigen Informationen?
  • Wie liest man aus der angezeigten Kurve Nullstellen, maximale Amplitude, Abstände, ... ab?

a) Die Sinuskurve ist um 0,75 nach oben verschoben.

Der Abstand zwischen Hoch- und Tiefpunkt der Sinuslinie ist 4,5, also ist die Amplitude 2,25.

Die Periodendauer ist 3,75.

Die Sinuskurve fängt mit 0,25 am linken Rand an.

b) Es sind d = 0,75, a = 2,25, b = 2*PI/3,75 und c = -0,224.
  Aufgabe   Stift.gif
  • In dem Applet auf dieser Seite wird gezeigt, wie man eine Schwingung darstellen kann. Mit dem Schieberegler für t kannst du die Schwingung darstellen. Überlege dir die gestellten Aufgaben und finde dann mit den angegebenen Größen y_max und T einen Funktionsterm für die zugehörige Sinusschwingung.
  • In dem Applet auf diesem Arbeitsblatt werden die Parameter einer Sinusschwingung aus der Physik behandelt. Welche Parameter a,b,c,d entsprechen welchen physikalischen Größen a, f, phi_0?
  • In diesem Lernpfad zur harmonischen Schwingung findest du als Lernschritt 8 eine Aufgabe. Kannst du sie lösen? Fertige eine Zeichnung an! Finde die entsprechenden Größen a,b,c,d von a sin(b x + c)+d?

Super! Nun hast du es geschafft und das Ende des Lernpfades erreicht.

Hefteintrag: Lese dir bitte deinen Hefteintrag durch und überprüfe kurz, ob du wirklich alle gelb hinterlegten Texte übernommen hast.

Nun hast du es wirklich geschafft. Du kannst stolz sein - gut gemacht! Ich wünsche dir noch einen schönen Tag!


Zusatzaufgaben

  Aufgabe   Stift.gif

In dem unteren Bild sind der Graph der Sinusfunktion (rot) und ein weiterer Graph einer Sinusfunktion (schwarz) zu sehen.

  • Du kennst die Nullstellen der Sinusfunktion. Wo sind sie?
  • Stelle in der Zeichnung fest an welchen Stellen der Graph der schwarzen Funktion Nullstellen hat und notiere sie.
  • Wo hat der Graph der schwarzen Funktion Hochpunkte/Tiefpunkte?
  • Wo ist er streng monoton fallend/steigend?
Sin(2x-2).jpg

a) Die Nullstellen der Sinusfunktion sind bei allen Vielfachen von PI, also x = k*PI.

b) Die Nullstellen der "schwarzen" Funktion sind bei x = 1, 1+PI/2, 1+PI, ...

c) Hochpunkte sind bei x = 1 + PI/4, 1 + 5/4*PI, ...
Tiefpunkte sind bei x = 1 - PI/4, 1 + 3/4*PI, ...

d) Der Graph ist zwischen Tief- und Hochpunkt jeweils streng monoton steigend und zwischen Hoch- und Tiefpunkt jeweils streng monoton fallend.
  Aufgabe   Stift.gif
  • Hier kannst beide Parameter c und d von sin(x+c)+d durch Verschieben des Graphen ändern und die Auswirkung auf den Funktionsterm betrachten. Übertrage deine Ergebnisse auf cos(x+c)+d.
  • In diesem Arbeitsblatt sollst du die zu den Graphen gehörenden Funktionsterme finden.
  • Was fällt auf, wenn du hier für \ b > 1 den Parameter \ c änderst?
  • In dem Applet auf dieser Seite werden die Parameter \ b und \ c anders verwendet. Finde den Unterschied zu den bisherigen Betrachtungen heraus.
  • Übertrage deine Ergebnisse auf a cos(bx+c)+d beziehungsweise a cos[b(x+c)]+d


zw:Trigonometrische Funktionen