Eigenschaften von Funktionen: Unterschied zwischen den Versionen
(→Grenzwert) |
|||
Zeile 7: | Zeile 7: | ||
Betrachte die folgenden Funktionen im angegebenen Intervall. Die Funktionen sind durch Funktionsterm und Graph gegeben. <br> | Betrachte die folgenden Funktionen im angegebenen Intervall. Die Funktionen sind durch Funktionsterm und Graph gegeben. <br> | ||
− | a) <math>f: \rightarrow x^2</math> in <math>R^+</math> <center>[[datei:Monotonie_quadratfunktion.jpg]]</center> | + | a) <math>f:x \rightarrow x^2</math> in <math>R^+</math> <center>[[datei:Monotonie_quadratfunktion.jpg]]</center> |
− | b) <math>f: \rightarrow sin(x)</math> in [0;1] <center>[[datei:Montonie_sinusfunktion.jpg]]</center> | + | b) <math>f:x \rightarrow sin(x)</math> in [0;1] <center>[[datei:Montonie_sinusfunktion.jpg]]</center> |
− | c) <math>f: \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1</math> in [0;3] <center>[[datei:Monotonie_kubikfunktion.jpg]]</center | + | c) <math>f:x \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1</math> in [0;3] <center>[[datei:Monotonie_kubikfunktion.jpg]]</center |
Was fällt dir auf? | Was fällt dir auf? | ||
Zeile 33: | Zeile 33: | ||
Betrachte die folgenden Funktionen in den angegebenen Intervallen Quadratfunktion in den angegebenen Intervallen | Betrachte die folgenden Funktionen in den angegebenen Intervallen Quadratfunktion in den angegebenen Intervallen | ||
</center> | </center> | ||
− | a) <math>f: \rightarrow x^2</math> in <math>R^-</math> <center>[[datei:Monotonie_quadratfunktion2.jpg]]</center><br> | + | a) <math>f:x \rightarrow x^2</math> in <math>R^-</math> <center>[[datei:Monotonie_quadratfunktion2.jpg]]</center><br> |
− | b) <math>f: \rightarrow sin(x)</math> in [2;3] <center>[[datei:Montonie_sinusfunktion.jpg]]</center> | + | b) <math>f:x \rightarrow sin(x)</math> in [2;3] <center>[[datei:Montonie_sinusfunktion.jpg]]</center> |
− | c) <math>f: \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1</math> in [-3;0] <center>[[datei:Monotonie_kubikfunktion2.jpg]]</center> | + | c) <math>f:x \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1</math> in [-3;0] <center>[[datei:Monotonie_kubikfunktion2.jpg]]</center> |
Was stellst du nun fest? Was haben alle drei Graphen in den angegebenen Intervallen gemeinsam? | Was stellst du nun fest? Was haben alle drei Graphen in den angegebenen Intervallen gemeinsam? |
Version vom 2. Januar 2012, 15:26 Uhr
Du hast nun Funktionen als Objekte in der Mathematik kennengelernt. Wir wollen als Nächstes untersuchen, welche Eigenschaften Funktionen haben.
Monotonie
Dieser Begriff des Ansteigens eines Funktionsgraphen fassen wir genauer und benennen ihn.
Eine Funktion heißt streng monoton zunehmend im Intervall [a;b], wenn für alle gilt: |
Auch diesen Begriff des Fallens eines Funktionsgraphen fassen wir - analog zu oben - genauer und benennen ihn.
Eine Funktion heißt streng monoton abnehmend im Intervall [a;b], wenn für alle gilt: |
Man könnte diese Begriffe monoton zunehmend und monoton abnehmend auch für die Funktionsgraphen übernehmen, hier verwendet man allerdings monoton steigend und monoton fallend.
Eine Funktionsgraph heißt streng monoton steigend im Intervall [a;b], wenn die Funktion dort streng monoton zunehmend ist, Eine Funktionsgraph heißt streng monoton fallend im Intervall [a;b], wenn die Funktion dort streng monoton abnehmend ist, |
Teste dich! Klicke im folgenden Quiz auf die richtigen Zuordnungen! |
(streng monoton steigend) (!streng monoton fallend) (!weder noch)
(!streng monoton steigend) (streng monoton fallend) (!weder noch)
(!streng monoton steigend) (!streng monoton fallend) (weder noch)
(!streng monoton steigend) (streng monoton fallend) (!weder noch)
(streng monoton steigend) (!streng monoton fallend) (!weder noch)
(!streng monoton steigend) (!streng monoton fallend) (weder noch)
(streng monoton steigend) (!streng monoton fallend) (!weder noch)
Für die folgende Multiple-Choice-Aufgabe kannst du als Hilfe GeoGebra öffnen, dir die Graphen der Funktionen zeichnen lassen und dann die Fragen beantworten.
im Intervall [2;8] (streng monoton zunehmend) (!streng monoton abnehmend) (!weder noch)
im Intervall [] (!streng monoton zunehmend) (streng monoton abnehmend) (!weder noch)
im Intervall [-1;4] (streng monoton zunehmend) (!streng monoton abnehmend) (!weder noch)
im Intervall [-1;4] (streng monoton zunehmend) (!streng monoton abnehmend) (!weder noch)
im Intervall [-1;4] (!streng monoton zunehmend) (!streng monoton abnehmend) (weder noch)
im Intervall [2;8] (streng monoton zunehmend) (!streng monoton abnehmend) (!weder noch)
mit im Intervall [-4;-1] (!streng monoton zunehmend) (streng monoton abnehmend) (!weder noch)
mit im Intervall [-3;9] (streng monoton zunehmend) (!streng monoton abnehmend) (!weder noch)
Grenzwert
Bearbeite diesen Crash-Kurs Grenzwerte |