Wurzelfunktion allgemeine Wurzelfunktion: Unterschied zwischen den Versionen
Zeile 23: | Zeile 23: | ||
a) Welches Volumen <math>V</math> ergibt sich für <math>a</math> = 1; 1,5; 2; 2,5? Halte deine Ergebnisse in Form einer Tabelle fest!<br> | a) Welches Volumen <math>V</math> ergibt sich für <math>a</math> = 1; 1,5; 2; 2,5? Halte deine Ergebnisse in Form einer Tabelle fest!<br> | ||
− | b) Gib eine Funktionsgleichung an, die der Seitenlänge <math>a</math> das Volumen <math>V</math> eines Würfels zuordnet! | + | b) Gib eine Funktionsgleichung an, die der Seitenlänge <math>a</math> das Volumen <math>V</math> eines Würfels zuordnet! <br> |
c) Welchen Wert nimmt <math>V</math> für <math>a</math> = 3; 5; 10; 15 an? Verwende dazu deine Funktionsgleichung!<br> | c) Welchen Wert nimmt <math>V</math> für <math>a</math> = 3; 5; 10; 15 an? Verwende dazu deine Funktionsgleichung!<br> | ||
d) Stelle mit dem Schieberegler für das Volumen <math>V</math> die Werte ein 1,728; 2,744; 3,375; 4,096; 4,913; 9,261; 15,625; 17,576. Lies die dazugehörigen Seitenlängen <math>a</math> im Applet ab und ergänze deine Tabelle! | d) Stelle mit dem Schieberegler für das Volumen <math>V</math> die Werte ein 1,728; 2,744; 3,375; 4,096; 4,913; 9,261; 15,625; 17,576. Lies die dazugehörigen Seitenlängen <math>a</math> im Applet ab und ergänze deine Tabelle! |
Version vom 28. April 2012, 13:52 Uhr
Startseite --- Die Wurzelfunktion - Übungen - Anwendungen --- Die allgemeine Wurzelfunktion - Übungen - Anwendungen --- Die Wurzelfunktion als Umkehrfunktion
Bei den folgenden Aufgaben bearbeitest du den Zusammenhang zwischen dem Volumen eines Würfels und seiner Seitenlänge.
Ein Würfel mit der Seitenlänge hat das Volumen .
Ist die Seitenlänge , dann ist also das Volumen .
Umgekehrt ist dann für einen Würfel mit Volumen die zugehörige Seitenlänge .
Im folgenden Applet wird der Seitenlänge eines Würfels das Volumen zugeordnet.
a) Welches Volumen ergibt sich für = 1; 1,5; 2; 2,5? Halte deine Ergebnisse in Form einer Tabelle fest! |
a) a, 3,375; 8; 15,625
b) 27; 125; 1000; 3375
c) 1,2; 1,4; 1,5; 1,6; 1,7; 2,1; 2,5; 2,6
Es ist
Man schreibt auch dafür
Merke:
Die Gleichung hat für jede natürliche Zahl n und jede nicht negative reelle Zahl x als Lösung Fehler beim Parsen(Lexikalischer Fehler): \sqrt[n]{a}\ heißt die n-te Wurzel aus a. |
a) Setze verschiedene Werte für das Würfelvolumen V ein, und berechne welche Werte sich für die Seitenlänge a ergeben. Trage die Ergebnisse in eine Wertetabelle ein. b) Erstelle ein V-a-Diagramm (V nach rechts, a nach oben antragen!) |
Merke:
Man definiert für jede natürliche Zahl n die allgemeine Wurzelfunktion n-ten Grades oder n-te Wurzelfunktion Fehler beim Parsen(Lexikalischer Fehler): f: x \rightarrow \sqrt[n]{x}\ mit und . |
Gib für die Würfelaufgabe die zugehörige Funktion an. |
mit
|
1. Stelle mit dem Schieberegler die passende Wurzelfunktion ein.
2. (0;0 und (1;1)
Betrachte nun die Wurzelfunktionen im folgenden Applet:
|
- Für ungerade n ist der Funktionsgraph auch für negative x gezeichnet.
- Es ist und damit oder allgemein und damit , also ist bei ungeraden Exponenten n auch die n-te Wurzel aus einer negativen Zahl erklärt.
Du hast nun die allgemeine Wurzelfunktion kennengelernt. Als nächstes kannst du wählen, ob du Übungen oder Anwendungen machen willst.