Rationale Funktionen Einführung: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 5: Zeile 5:
  
 
{{Aufgabe|
 
{{Aufgabe|
Die Mantelfläche <math>M</math> der Kugelhaube ist <math>M = 2\pi R h</math> wobei <math>R</math> der Erdradius 6370km und <math>l</math> die Länge der Strecke [CD] ist.  
+
Die Mantelfläche <math>M</math> der Kugelhaube ist <math>M = 2\pi R h</math> wobei <math>R</math> der Erdradius <math>R = 6370 km</math> und <math>h</math> die Länge der Strecke [CD] ist.  
  
1. Zeige, dass die Mantelfläche <math>M</math> in Abhängigkeit der Höhe h zu <math>M=\frac{2\pi R^2h}{R+x}</math> ergibt.
+
1. Zeige, dass die Mantelfläche <math>M</math> in Abhängigkeit der Höhe <math>x</math> sich zu <math>M=\frac{2\pi R^2h}{R+x}</math> ergibt.
  
 
Die Höhe <math>x</math> ist die Variable für die Mantelfläche <math>M</math>.  
 
Die Höhe <math>x</math> ist die Variable für die Mantelfläche <math>M</math>.  

Version vom 9. Februar 2013, 15:00 Uhr

Astronauten, die von einer Raumstation,welche in der Höhe x um die Erde kreist, auf die Erde blicken, sehen eine Kugelhaube.

Erde tangenten.jpg


Stift.gif   Aufgabe

Die Mantelfläche M der Kugelhaube ist M = 2\pi R h wobei R der Erdradius R = 6370 km und h die Länge der Strecke [CD] ist.

1. Zeige, dass die Mantelfläche M in Abhängigkeit der Höhe x sich zu M=\frac{2\pi R^2h}{R+x} ergibt.

Die Höhe x ist die Variable für die Mantelfläche M.

2. a) Bestimme die Definitionsmenge.

b) Welchen Wert dürftest du nicht für x einsetzen?

c) Welcher Grenzwert ergibt sich für die Mantelfläche  M für  x \rightarrow \infty?



1.
Erde tangenten-dreiecke.jpg

In diesem Bild betrachet man die zwei rechtwinkligen Dreiecke \Delta AMS und  \Delta AMD, welche zueinander ähnlich sind. In ähnlichen Dreiecken sind die Streckenverhältnisse entsprechender Seiten gleich: Im Dreieck \Delta AMS betrachtet man das Streckenverhältnis \frac {\bar {SM}}{\bar {}{MA}} = \frac {R+x}{R}. Das entsprechende Seitenverhältnis im Dreieck  \Delta AMD ist \frac {\bar {MA}}{\bar {}{MD}} = \frac {R}{R-h}.

Also ist \frac {R+x}{R} = \frac {R}{R-h}.

Formt man um  R-h = \frac{R^2}{R+x} und löst nach h auf und fasst die rechte Seite zusammen, dann ergibt sich  h = R - \frac{R^2}{R+x}=\frac{R^2+Rx-R^2}{R+x}=\frac{Rh}{R+x}.

Setzt man den Term für h in die Formel für die Mantelfläche ein, so ergibt sich  M = \frac {2 \pi R^2 x}{R+x}

2. a)  D = [0;\infty[

b)  x \not= -R

c)  M = 2 \pi R^2