Wurzelfunktion allgemeine Wurzelfunktion: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 6: Zeile 6:
  
 
Bei den folgenden Aufgaben bearbeitest du den Zusammenhang zwischen dem Volumen eines Würfels und seiner Seitenlänge.  
 
Bei den folgenden Aufgaben bearbeitest du den Zusammenhang zwischen dem Volumen eines Würfels und seiner Seitenlänge.  
<br>
+
<br><br>
 
Ein Würfel mit der Seitenlänge <math>a</math> hat das Volumen <math> V = a^3</math>.
 
Ein Würfel mit der Seitenlänge <math>a</math> hat das Volumen <math> V = a^3</math>.
  
Ist die Seitenlänge <math>a= 3 cm</math>, dann ist das Volumen <math> V = 27 cm^3</math>.  
+
Ist die Seitenlänge <math>a = 3 cm</math>, dann ist also das Volumen <math> V = 27 cm^3</math>.  
 
+
<br>Umgekehrt ist dann für einen Würfel mit Volumen <math> V= 27 cm^3</math> die zugehörige Seitenlänge <math>a= 3 cm</math>.<br>
Umgekehrt ist dann für einen Würfel mit Volumen <math> V= 27 cm^3</math> die zugehörige Seitenlänge <math>a= 3 cm</math>.<br>
+
  
  

Version vom 28. April 2012, 13:39 Uhr

Startseite --- Die Wurzelfunktion - Übungen - Anwendungen --- Die allgemeine Wurzelfunktion - Übungen - Anwendungen --- Die Wurzelfunktion als Umkehrfunktion


Wuerfel.jpg

Bei den folgenden Aufgaben bearbeitest du den Zusammenhang zwischen dem Volumen eines Würfels und seiner Seitenlänge.

Ein Würfel mit der Seitenlänge a hat das Volumen  V = a^3.

Ist die Seitenlänge a = 3 cm, dann ist also das Volumen  V = 27 cm^3.
Umgekehrt ist dann für einen Würfel mit Volumen  V= 27 cm^3 die zugehörige Seitenlänge a= 3 cm.



Stift.gif   Aufgabe

Im folgenden Applet ist über der Seitenlänge a eines Würfels das Volumen V aufgetragen. Der Punkt V hat die Koordinaten (a, V). Mit dem Schieberegler kannst du verschiedene Werte für a einstellen.


a) Welches Volumen V ergibt sich für a = 1; 1,5; 2; 2,5?
b) Welchen Wert nimmt V für a = 3; 5; 10; 15 an?
c) Lies durch Variation des Schiebereglers ab für welche Werte a das Volumen V = 1,728; 2,744; 3,375; 4,096; 4,913; 9,261; 15,625; 17,576 ist.

a) a, 3,375; 8; 15,625
b) 27; 125; 1000; 3375
c) 1,2; 1,4; 1,5; 1,6; 1,7; 2,1; 2,5; 2,6


Es ist

 a = V^{\frac{1}{3}}

Man schreibt auch dafür

Fehler beim Parsen(Lexikalischer Fehler): a = \sqrt[3]{V}\


Maehnrot.jpg
Merke:

Die Gleichung  a = x^n hat für jede natürliche Zahl n und jede nicht negative reelle Zahl x als Lösung

 x = a^{\frac{1}{n}} oder Fehler beim Parsen(Lexikalischer Fehler): x = \sqrt[n]{a}\

Fehler beim Parsen(Lexikalischer Fehler): \sqrt[n]{a}\

heißt die n-te Wurzel aus a.


Stift.gif   Aufgabe

a) Setze verschiedene Werte für das Würfelvolumen V ein, und berechne welche Werte sich für die Seitenlänge a ergeben. Trage die Ergebnisse in eine Wertetabelle ein.

b) Erstelle ein V-a-Diagramm (V nach rechts, a nach oben antragen!)

Dein Ergebnis kann so aussehen.
a) Wuerfel V-a-Tabelle.jpg
b) Wuerfel V-a-graph.jpg
Verbindet man die Punkte, dann erhält man diesen Graphen:

Wuerfel V-a-graph 2.jpg


Maehnrot.jpg
Merke:

Man definiert für jede natürliche Zahl n die allgemeine Wurzelfunktion n-ten Grades oder n-te Wurzelfunktion

Fehler beim Parsen(Lexikalischer Fehler): f: x \rightarrow \sqrt[n]{x}\

mit  x \in R^+_0 und n \in N.


  Aufgabe 1  Stift.gif

Gib für die Würfelaufgabe die zugehörige Funktion an.


f:V \rightarrow \sqrt[3]{V} mit V \in R^+_0


  Aufgabe 2  Stift.gif
  1. Zeichne für n = 1, 2, 3, 4, 5, 6 die Graphen der n-ten Wurzelfunktion Fehler beim Parsen(Lexikalischer Fehler): f: x \rightarrow \sqrt[n]{x}\
  1. Welche Punkte haben alle Graphen gemeinsam?


1. Stelle mit dem Schieberegler die passende Wurzelfunktion ein.

2. (0;0 und (1;1)


  Aufgabe 3  Stift.gif

Betrachte nun die Wurzelfunktionen im folgenden Applet:
Variiere mit dem Schieberegler n.

  1. Was ist der Unterschied zu Aufgabe 2?
  2. Wieso ist dies möglich?


  1. Für ungerade n ist der Funktionsgraph auch für negative x gezeichnet.
  2. Es ist (-3)^3=(-3)(-3)(-3)=-27 und damit \sqrt[3]{-27}\ = -3 oder allgemein  (-a)^3=-a^3 und damit \sqrt[3]{-a^3}\ = -a , also ist bei ungeraden Exponenten n auch die n-te Wurzel aus einer negativen Zahl erklärt.



Du hast nun die allgemeine Wurzelfunktion kennengelernt. Als nächstes kannst du wählen, ob du Übungen oder Anwendungen machen willst.