Rationale Funktionen Polstellen: Unterschied zwischen den Versionen
| Zeile 22: | Zeile 22: | ||
Ist n ungerade, dann hat die Funktion <math>f:x\rightarrow \frac{1}{(x-x_0)^n}</math> mit <math>D = R\backslash \{x_0\}</math> an der Stelle <math>x = x_0</math> einen '''Pol mit Vorzeichenwechsel'''. | Ist n ungerade, dann hat die Funktion <math>f:x\rightarrow \frac{1}{(x-x_0)^n}</math> mit <math>D = R\backslash \{x_0\}</math> an der Stelle <math>x = x_0</math> einen '''Pol mit Vorzeichenwechsel'''. | ||
| + | |||
| + | Die Ordnung der Polstelle <math>x_0</math> ist gibt an wie oft <math>x_0</math> Nullstelle des Nenners (des gekürzten Bruches) ist. | ||
}} | }} | ||
| Zeile 48: | Zeile 50: | ||
c) x = 2; Pol 2. Ordnung; Pol ohne Vorzeichenwechsel; Annäherung von links (x<2): <math>h(x) \rightarrow \infty</math>; Annäherung von rechts (x>2): <math> h(x) \rightarrow \infty</math> | c) x = 2; Pol 2. Ordnung; Pol ohne Vorzeichenwechsel; Annäherung von links (x<2): <math>h(x) \rightarrow \infty</math>; Annäherung von rechts (x>2): <math> h(x) \rightarrow \infty</math> | ||
| − | d) x = 3; Pol 7. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3): <math>k(x) \rightarrow -\infty</math>; Annäherung von rechts (x>3): <math> k(x) \rightarrow | + | d) x = 3; Pol 7. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3): <math>k(x) \rightarrow -\infty</math>; Annäherung von rechts (x>3): <math> k(x) \rightarrow \infty</math> |
e) x = -2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<-2): <math>l(x) \rightarrow \infty</math>; Annäherung von rechts (x>-2): <math> f(x) \rightarrow -\infty</math><br> | e) x = -2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<-2): <math>l(x) \rightarrow \infty</math>; Annäherung von rechts (x>-2): <math> f(x) \rightarrow -\infty</math><br> | ||
Version vom 4. April 2013, 10:24 Uhr
Die Funktion
ist für
nicht definiert. Wie verhält sie sich in der Umgebung von
? Je kleiner
betragsmäßig wird, desto größer wird der Betrag von
. Zeigt eine Funktion für einen x-Wert ein solches Verhalten, dann ist der x-Wert eine Definitionslücke und man bezeichnet diese Stelle als Polstelle.
|
Ist an einer Definitionslücke
dann ist die Definitionslücke |
Beispiele:
1. Die Funktion
hat für
einen Pol 1. Ordnung (
ist einfache Nullstelle des Nenners).

Nähert man sich von links an, also
mit
, dann streben die Funktionswerte nach
; nähert man sich von rechts an, also
mit
, dann streben die Funktionswerte nach
.
hat an
eine Polstelle mit Vorzeichenwechsel. Die Gerade
ist senkrechte Asymptote des Graphen von
.
2. Die Funktion
hat für
einen Pol 2. Ordnung (
ist zweifache Nullstelle des Nenners).

Nähert man sich von links oder von rechts an, also
mit
oder
, dann streben die Funktionswerte in beiden Fällen nach
.
hat an
eine Polstelle ohne Vorzeichenwechsel. Die Gerade
ist senkrechte Asymptote des Graphen von
.
|
Man kann allgemein für eine gebrochen-rationale Funktion Ist n gerade, dann hat die Funktion Ist n ungerade, dann hat die Funktion Die Ordnung der Polstelle |
|
Ermittle bei den gegebenen Funktionen jeweils die Polstelle(n) der Funktion und beschreibe das Vorzeichenverhalten der Funktion bei Annäherung an die Polstelle(n). a) b) c) d) e) |
a) x = 2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<2):
; Annäherung von rechts (x>2):
b) x = 2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<2):
; Annäherung von rechts (x>2):
c) x = 2; Pol 2. Ordnung; Pol ohne Vorzeichenwechsel; Annäherung von links (x<2):
; Annäherung von rechts (x>2):
d) x = 3; Pol 7. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3):
; Annäherung von rechts (x>3):
e) x = -2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<-2):
; Annäherung von rechts (x>-2): 
; Annäherung von rechts (x>3): 
einer gebrochen-rationalen Funktion
,
formulieren:
mit
an der Stelle
einen Pol ohne Vorzeichenwechsel.
mit
mit
mit

