Rationale Funktionen hebbare Definitionslücken: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 20: Zeile 20:
 
Für n = 4 und n = 3 ist <math>x=2</math> nicht hebbare Definitionslücke. Der Graph hat an der Stelle <math>x=2</math> eine Polstelle ohne bzw. mit Vorzeichenwechsel.
 
Für n = 4 und n = 3 ist <math>x=2</math> nicht hebbare Definitionslücke. Der Graph hat an der Stelle <math>x=2</math> eine Polstelle ohne bzw. mit Vorzeichenwechsel.
  
Für n = 2 ist die Definitionslücke <math>x=2</math> hebbar. Am Graph sieht man  
+
Für n = 2 ist die Definitionslücke <math>x=2</math> hebbar.  
 +
 
 +
Ebenso sieht der Graph für n = 1 "durchgezeichnet" aus, <math>x=2</math> ist eine hebbare Definitionslücke. 
 +
 
 +
Tatsächlich ist aber für n = 2 oder n = 1 an der Stelle <math>x = 2</math> ein Loch. Die Funktion <math>f</math> ist dort nicht definiert! Man kann <math>f</math> aber in <math>x = 2</math> fortsetzen.<br>
 +
Für n = 2 würde man am Graph den Wert <math>\tilde f(2)=5</math> ablesen.<br>
 +
Für n = 1 würde man am Graph den Wert <math>\tilde f(2)=0</math> ablesen.
 +
 
 +
 
 
}}
 
}}
  

Version vom 6. April 2013, 15:24 Uhr

Die Funktion Fehler beim Parsen(Unbekannte Funktion „\fra“): f:x\rightarrow \fra{x-1}{x^2+x-2}

ist an den Nullstellen des Nenners n(x)=x^2+x-2=(x+2)(x-1), also für x \not= -2; 1 nicht erklärt. Vereinfacht man den Funktionsterm \frac{x-1}{x^2+x-2} =\frac{x-1}{(x+2)(x-1)}=\frac{1}{x+2} so ist der gekürzte Term \frac{1}{x+2} für x = 1 erklärt mit dem Wert \frac{1}{3}. Man sagt, dass x=1 eine hebbare Definitionslücke ist.
Nuvola apps kig.png   Merke

Ist x_0 eine Nullstelle des Zählers und des Nenners der gebrochen-rationalen Funktion f:x\rightarrow \frac{z(x)}{n(x)} und existiert der Grenzwert \lim_{x \to x_0}{f(x)}, so nennt man  x_0 eine hebbare Definitionslücke der Funktion f.

Die neue Funktion \tilde f:x\rightarrow \frac{1}{x+2} ist für  x = 1 mit dem Funktiionswert \tilde f(1) = \frac{1}{3} definiert. Man kann also die Funktion  f in die hebbare Definitionslücke fortsetzen. Nimmt man den Funktionswert von \tilde f(1)=\frac{1}{3}, dann hat man die Funktion sogar stetig fortgesetzt.

Stift.gif   Aufgabe

Im folgenden Applet wird die Funktion f:x \rightarrow f(x) = \frac{(x+3)(x-2)^2}{(x-2)^n} dargestellt .
Variiere mit dem Schieberegler den Wert des Exponenten der Nennerpotenz.

Beobachte die Veränderungen für x=2 beim Variieren von n. Formuliere deine Beobachtung.

[Lösung anzeigen]

  Aufgabe 1  Stift.gif

Gib jeweils für die Funktion f die Definitionslücken an und untersuche welche Definitionslücken hebbar sind. Gib gegebenenfalls eine Fortsetzung von f.

a) f mit f(x) = \frac{x^2-4}{x-2}

b) f mit f(x) = \frac{4x}{x^2-2x}

c) f mit f(x) = \frac{1}{x+7}

d) f mit f(x) = \frac{x^2-4}{x-3}

e) f mit f(x) = \frac{x^3+x^2-6x}{x^2+4x+4}

f) f mit f(x) = \frac{x^3+x^2-6x}{x-3}

g) f mit f(x) = \frac{x^3+x^2-6x}{x^2-5x+6}


[Lösung anzeigen]

  Aufgabe 2  Stift.gif

Ordne die hebbare bzw. nicht hebbare Definitionslücke und die angegebene Funktion f:x \rightarrow f(x) richtig zu!


f(x) = \frac{x^2-8x}{x^2-64}

x=2 ist nicht hebbare Definitionslücke.

f(x) = \frac{2x}{x-12}

x=3 ist nicht hebbare Definitionslücke.

x=1 ist hebbare Definitionslücke.

f(x) = \frac{x-3}{2x^2-6x}

f(x) = \frac{x^2-x}{x^2-1}x=12 ist nicht hebbare Definitionslücke.x=8 ist hebbare Definitionslücke.f(x) = \frac{x^2-2x+1}{x^2-3x+2}f(x) = \frac{x^2-5x+4}{x^2-7x+12}x=3 ist hebbare Definitionslücke.