Didaktischer Kommentar

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche

Zurück zur Startseite


Skizze Gf.gif

Der Lernpfad "Funktionen - Einstieg" kann zum Einstieg in das Thema Funktionen in der 5. Klasse AHS (9. Schulstufe) eingesetzt werden. Anhand konkreter Aufgabenstellungen soll mit Hilfe des Einsatzes elektronischer Medien Vorwissen aus der Unterstufe aktiviert und vertieft (verschiedene Darstellungsformen für Funktionen wie Formel, Wertetabelle, Graph) sowie neue Kenntnisse zum Funktionsbegriff (Präzisierung der Funktionsdefinition, Bezeichnungen wie Definitionsmenge, Zielmenge, Argument, Funktionswert,…) erarbeitet und an komplexeren Aufgabenstellungen angewendet werden.

Inhaltsverzeichnis

Kurzübersicht

Schulstufe

5. Schulstufe in Österreich bzw. 10. Jahrgangsstufe in Deutschland

Unterrichtsfächer

Mathematik

Dauer

Dauer ca. 8 UE

Technische Voraussetzungen

Internet und Java, GeoGebra einschließlich Tabellen und CAS, YouTube für Videos, Flash

Medien

Java-Applets, GeoGebra einschließlich Tabellen und CAS, Bilder, interaktive Tests

Lernziele

  • Kenntnis und Handhabung von Wertetabelle, Graph und Funktionsterm als Darstellungsmöglichkeiten von Funktionen
  • Übersetzen von einer Realsituation in ein mathematisches Modell
  • Verstehen einer exakten Definition der Funktion und des Funktionsgraphen
  • Wechseln zwischen den Darstellungsformen Graph, Tabelle und Formel
  • Funktionen als mathematische Objekte erkennen
  • Kenntnis von Eigenschaften von Funktionen

Kompetenzen

Operieren, Interpretieren, Kommunizieren, Argumentieren, Dokumentieren, Transferieren

Methodik

Gruppenarbeit, Lernen an Stationen

Autoren

Irma Bierbaumer, Franz Embacher, Helmut Heugl (2006), überarbeitet von Karl Haberl (2012)

Zur Nutzung dieses Lernpfades

Einsatz des Lernpfades als Lernsequenz
Der verbindende Text soll als Leitfaden für das selbstgesteuerte Lernen dienen.

Einsatz im Rahmen einer Lernspirale
Der modulartige Aufbau erlaubt einen Einsatz nach individuellen methodischen Vorstellungen (nach eigenem "Drehbuch"). Die in diesem Kapitel angesprochenen Grundfähigkeiten und Grundfertigleiten sollten aber auf jeden Fall vermittelt werden. Dabei kann die Übersicht eine Art Leitlinie hierzu sein. Dabei sind Pflichtaufgaben, Wahlpflichtaufgaben oder Bonusaufgaben zu bearbeiten.

Gruppenarbeit
Grundsätzlich kann der Lernpfad auch in Gruppenarbeit bearbeitet werden. Dabei können einzelne Aufgaben für leine Gruppe ausgewählt werden, die dann den anderen Gruppen vorgestellt werden müssen.

Gerade "Eigenschaften von Funktionen" bietet sich für Expertengruppen an.

Lernen an Stationen

Man kann den Lernpfad auch als "Lernen an Stationen" auffassen, und den SchülerInnen einen Lernplan mitgeben, auf dem sie notieren, was schon bearbeitet wurde.

Das Arbeitsblatt für SchülerInnen kann hier heruntergeladen und dann ausgedruckt werden. Dabei sind Pflichtaufgaben, Wahlpflichtaufgaben oder Bonusaufgaben zu bearbeiten.

Didaktische Grundlagen

Zur fundamentalen Idee der "Funktion"

Allgemeinbegriffe erwirbt man in der Regel durch die Erfahrung und Begegnung mit prototypischen Repräsentanten (den Begriff "Tisch" verinnerlicht man nicht, indem man eine exakte Definition gibt, sondern weil man verschiedene Prototypen des Tisches erlebt). So verinnerlichen Lernende die fundamentale Idee der Funktion auch nicht durch eine "saubere" Definition am Beginn des Lernprozesses, sondern indem er verschiedene Prototypen dieses Begriffes möglichst anhand von Beispielen aus seiner Erfahrungswelt erlebt [Dörfler, 1991].

Im Laufe des "Funktionenlernens" erleben Lernende verschieden Prototypen des Funktionsbegriffes:

Prototypen.gif

"Funktionenlernen" besteht im Wesentlichen darin, einen Prototypen zu finden, Beziehungen zwischen Prototypen herzustellen oder bestimmte Prototypen für das Problemlösen zu nutzen.

Funktionenlernen an "Prototypen" in diesem Lernpfad
Text <-> Tabelle <-> Formel (=Funktionsgleichung) <-> Tabelle <-> Graf

Handybeispiel (1): Aus einem Text eine Tabelle, eine Gleichung finden.
Handybeispiel (2): Mit einem geeigneten elektronischen Werkzeug eine Tabelle erstellen.
Handybeispiel (3): Die Tabelle zum Problemlösen nutzen.
Schachtelbeispiel (1): Aus einem Text, einer Skizze, einer Flashanimation eine Formel (Funktionsgleichung) finden.
Schachtelbeispiel (2): Aus einer Formel eine Tabelle mit variabler Schrittweite erstellen.
Handybeispiel (4) und Schachtelbeispiel (3): Aus dem Text bzw. der Funktionsgleichung Eigenschaften der jeweiligen Funktionen ableiten können.
Schachtelbeispiel (5), Handybeispiel (4) und (5): Aus Gleichungen und Tabellen Graphen mit Hilfe geeigneter elektronischer Werkzeuge ermitteln können.

Zum genetischen Konzept

  • Anschluss an das Vorverständnis der Adressaten.
  • Probleme, wie z.B. Handytarife, kommen aus der Erfahrungswelt der Schülerinnen und Schüler.
  • Zulässigkeit einer informellen Einführung.
  • Eine "saubere" Definition des Funktionsbegriffes erfolgt erst, wenn die Schülerinnen und Schüler schon längst mit verschiedenen Funktionsprototypen Bekanntschaft gemacht haben.
  • Hinführen zu strengeren Überlegungen; Erweiterung des Gesichtskreises, Standpunktsverlagerung.
  • Die Aufgabensequenz soll den Schülerinnen und Schülern die Notwendigkeit einer exakteren Fassung des Funktionsbegriffes klar machen (Definitions- und Zielmenge, usw.)
  • Durchgehende Motivation, Kontinuität.
  • Die Schülerinnen und Schüler sollten auch das Gemeinsame in dieser Aufgabensequenz erkennen und den Zusammenhang der einzelnen Phasen verstehen.

Drei Phasen des Mathematiklernens

  • Die experimentelle, heuristische Phase:

Durch experimentieren mit verschiedenen Funktionsprototypen (Tabelle, Graf, usw.) erfahren die Schülerinnen und Schüler die wichtigsten Kennzeichen funktionaler Abhängigkeiten.

  • Die exaktifizierende Phase:

Sie besteht in diesem Lernpfad in der Definition der Funktion und des Funktionsgraphen. Beweise im engeren Sinn findet man erst in späteren Teilen des Kapitels "Funktion".

  • Die Anwendungsphase:

Anwendungen begleiten den ganzen Lernprozess. Aus den Anwendungen wird auch der Funktionsbegriff erarbeitet. Im letzten Teil werden dann noch Aufgaben zur Festigung des Gelernten und eventuell zur Selbstevaluation und als Übungsaufgaben angeboten.

Grundvorstellungen - Grundfähigkeiten

Grundvorstellungen zu Funktionen

Grundvorstellung 1:

Einen naiven Funktionsbegriff verinnerlichen: "Abhängigkeiten zwischen Größen"

Grundvorstellung 2:

Beziehungen zwischen verschiedenen "Prototypen" des Funktionsbegriffes herstellen und nutzen können:

       Text <-> Tabelle
       Text <-> Term
       Term <-> Tabelle
       Tabelle <-> Graph
       Term <-> Graph 

Grundvorstellung 3:

Einen exakteren Funktionsbegriff verinnerlichen.

Grundfähigkeiten zu Funktionen

  • Grundfähigkeit 1:

Mit Informationen aus einem Text eine Tabelle erstellen können

  • Grundfähigkeit 2:

Tabelle zum Interpretieren, zum Problemlösen nutzen können

  • Grundfähigkeit 3:

Aus einem Text, einer Tabelle einen Funktionsterm entwickeln können

  • Grundfähigkeit 4:

Aus einem Text, einer Tabelle, einem Term einen sinnvollen Definitionsbereich ableiten können

  • Grundfähigkeit 5:

Aus einer Tabelle, einem Funktionsterm einen Graphen zeichnen können

  • Grundfähigkeit 6:

Graphen interpretieren können

  • Grundfähigkeit 7:

Für alle diese Grundfähigkeiten technologische Hilfsmittel nutzen können

Genderaspekte

Der Lernpfad ist so ausgelegt, dass er Mädchen und Jungen gleichermaßen anspricht. Die Applets sind für beide Geschlechter gleich gut geeignet. Es handelt sich wesentlich um mathematische Themen, die Beispiele sind für beide Geschlechter anschaulich und aus ihrer Erfahrungswelt gegriffen. Es müssen daher keine Alternativen für geschlechterspezifische Aufgaben angegeben werden. Die Aufgaben bei den Eigenschaften von Funktionen sind rein mathematisch orientiert und damit geschlechtsunabhängig. Der Lernpfad ist gleichermaßen für Jungen wir Mädchen geeignet.

Kompetenzen

Auf der Seite Kompetenzen sind die geförderten Kompetenzen ausführlich beschreiben.

Insgesamt werden alle Handlungskompetenzen

Modellieren - Transferieren - Operieren - Interpretieren - Dokumentieren - Argumentieren - Kommunizieren

genutzt, gefordert und gefördert.

Literatur

Dörfler, Willi. (1991): "Der Computer als kognitives Werkzeug und kognitives Medium" in Computer - Mensch - Mathematik. Verlag Hölder-Pichler-Tempsky, Wien, 1991, S. 51. ISBN3-209-01452-3.



Zurück zur Startseite