Rationale Funktionen Polstellen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche

Die Funktion f: x \rightarrow \frac{1}{x} ist für  x = 0 nicht definiert. Wie verhält sie sich in der Umgebung von 0? Je kleiner x betragsmäßig wird, desto größer wird der Betrag von \frac{1}{x}. Zeigt eine Funktion für einen x-Wert ein solches Verhalten, dann ist der x-Wert eine Definitionslücke und man bezeichnet diese Stelle als Polstelle.

Nuvola apps kig.png   Merke

Ist an einer Definitionslücke x_0 einer gebrochen-rationalen Funktion f

\lim_{x \to x_0}\left| f(x) \right|=\infty,

dann ist die Definitionslücke  x_0 eine Polstelle von f.

Beispiele:

1. Die Funktion f: x \rightarrow \frac{1}{x} hat für  x = 0 einen Pol 1. Ordnung (0 ist einfache Nullstelle des Nenners).

Indirekte proportionalität.jpg

Nähert man sich von links an, also  x \rightarrow 0 mit x<0, dann streben die Funktionswerte nach -\infty; nähert man sich von rechts an, also  x \rightarrow 0 mit x>0, dann streben die Funktionswerte nach \infty. f hat an  x = 0 eine Polstelle mit Vorzeichenwechsel. Die Gerade x = 0 ist senkrechte Asymptote des Graphen von f.

2. Die Funktion g: x \rightarrow \frac{1}{x^2} hat für  x = 0 einen Pol 2. Ordnung (0 ist zweifache Nullstelle des Nenners).

1 durch x^2.jpg

Nähert man sich von links oder von rechts an, also  x \rightarrow 0 mit x<0 oder x>0, dann streben die Funktionswerte in beiden Fällen nach \infty. g hat an  x = 0 eine Polstelle ohne Vorzeichenwechsel. Die Gerade x = 0 ist senkrechte Asymptote des Graphen von f.

Nuvola apps kig.png   Merke

Man kann allgemein für eine gebrochen-rationale Funktion  f mit  f(x)=\frac{1}{(x-x_0)^n} formulieren:

Ist n gerade, dann hat die Funktion f:x\rightarrow \frac{1}{(x-x_0)^n} mit D = R \backslash   \{x_0\} an der Stelle x = x_0 einen Pol ohne Vorzeichenwechsel.

Ist n ungerade, dann hat die Funktion f:x\rightarrow \frac{1}{(x-x_0)^n} mit D = R\backslash   \{x_0\} an der Stelle x = x_0 einen Pol mit Vorzeichenwechsel.

Die Ordnung der Polstelle x_0 ist die Zahl die angibt wie oft x_0 Nullstelle des Nenners (des gekürzten Bruches) ist.


Stift.gif   Aufgabe

Ermittle bei den gegebenen Funktionen jeweils die Polstelle(n) der Funktion und beschreibe das Vorzeichenverhalten der Funktion bei Annäherung an die Polstelle(n).

a) f mit  f(x) = \frac{1}{x-2}

b) g mit  g(x) = \frac{1}{2-x}

c) h mit  h(x) = \frac{1}{(x-2)^2}

d) k mit  k(x) = \frac{1}{(x-3)^7}

e) l mit  l(x) = \frac{1}{(x-3)(x+2)}


a) x = 2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<2): f(x) \rightarrow -\infty; Annäherung von rechts (x>2):  f(x) \rightarrow \infty

b) x = 2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<2): g(x) \rightarrow \infty; Annäherung von rechts (x>2):  g(x) \rightarrow -\infty

c) x = 2; Pol 2. Ordnung; Pol ohne Vorzeichenwechsel; Annäherung von links (x<2): h(x) \rightarrow \infty; Annäherung von rechts (x>2):  h(x) \rightarrow \infty

d) x = 3; Pol 7. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3): k(x) \rightarrow -\infty; Annäherung von rechts (x>3):  k(x) \rightarrow \infty

e) x = -2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<-2): l(x) \rightarrow \infty; Annäherung von rechts (x>-2):  f(x) \rightarrow -\infty

x = 3; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3): l(x) \rightarrow -\infty; Annäherung von rechts (x>3):  f(x) \rightarrow \infty