Quadratische Funktionen 2 Einfluss von b

Aus Medienvielfalt-Wiki
Version vom 9. Dezember 2020, 12:27 Uhr von Karlo Haberl (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Zurück zu 6. Allgemeine quadratische Funktion



Wir betrachten nun den Einfluss von  \ b in f: x \rightarrow x^2 + bx .

  Aufgabe B1  Stift.gif
  1. Mit dem Schieberegler kannst du den Wert von  \ b ändern.
  2. Stelle den Schieberegler auf  \ b = 2 ein. Wie ändert sich der Graph?
  3. Überlege dir, wie sich die Werte  \ b = 3  und  \ b = -1 sowie  \ b = 0,5 auf den Graphen auswirken und überprüfe deine Vermutung.
  4. Formuliere das Ergebnis deiner Untersuchungen.


  Aufgabe B2  Stift.gif
Versuche nun die beobachteten Veränderungen auch mathematisch zu begründen!


Die Funktionen, die wir in diesem Kapitel betrachtet haben, sind auch quadratische Funktionen. Sie haben den Funktionsterm ax2 + bx.

Wir lassen den Wert für a gleich und verändern nur den Wert für b.

  Aufgabe B3  Stift.gif
Untersuche an dem Applet rechts den Einfluss von b auf den Verlauf des Graphen.
  1. Was bleibt gleich?
  2. Was ändert sich?


  Aufgabe B4  Stift.gif
  1. Gibt es einen Zusammenhang zwischen dem blauen und grünen Graphen? Experimentiere erneut mit dem Applet und bestätige deine Vermutung.
  2. Setzt den Satz fort: "Die Graphen liegen spiegelbildlich bezüglich der y-Achse für ...





Aufgabe B1:

Man erhält den Graph der Funktion  f: x \rightarrow x^2 + bx
aus dem Graph der Quadratfunktion q: x \rightarrow x^2 durch Verschiebung sowohl in x- wie auch in y-Richtung
Genauer:
  • Ist b > 0, so wird die Normalparabel schräg nach links unten verschoben.
  • Ist b < 0, so wird die Normalparabel schräg nach recht unten verschoben.
  • Je größer der Betrag von b ist, desto mehr wird in y-Richtung verschoben
  • Der Graph zu -b ist spiegelsymmetrisch bezüglich der y-Achse zum Graph von b.
  • Die Scheitel aller Graphen zu  f: x \rightarrow x^2 + bx liegen auf der dem Graphen der Funktion -q: x \rightarrow -x^2

Aufgabe B2:

Zum Graph der Quadratfunktion q: x \rightarrow x^2 , der Normalparabel, wird noch die Gerade y = bx addiert. Daher kommt für positives b im III.Quadrant ein negativer und im I. Quadrant ein positiver Anteil, für negatives b im II.Quadrant ein positiver und im IV. Quadrant ein negativer Anteil dazu. Dies bewirkt eine Verschiebung des Scheitels. Ansonsten hat der Graph weiterhin das Aussehen einer Normalparabel.

Aufgabe B3:

  1. Die Weite der Parabel bleibt gleich.
  2. Der Scheitel wird verschoben.

Aufgabe B4:

  1. Der blaue und der grüne Graph liegen symmetrisch zur y-Achse.
  2. Die Graphen liegen spiegelbildlich bezüglich der y-Achse für b = 2 und b = -2.

Hefteintrag: Beachte, dass in der Lösung zur Aufgabe B1 ein Hefteintrag "versteckt" ist!


Zurück zu 6. Allgemeine quadratische Funktion