Rationale Funktionen Einführung
Astronauten, die von einer Raumstation,welche in der Höhe h um Erde kreist, auf die Erde blicken, sehen eine Kugelhaube.
Die Mantelfläche der Kugelhaube ist wobei der Erdradius 6370km und die Länge der Strecke [CD] ist. Zeige, dass die Mantelfläche in Abhängigkeit der Höhe h zu ergibt |
In diesem Bild betrachet man die zwei rechtwinkligen Dreiecke und , welche zueinander ähnlich sind. In ähnlichen Dreiecken sind die Streckenverhältnisse entsprechender Seiten gleich: Im Dreieck betrachtet man das Streckenverhältnis . Das entsprechende Seitenverhältnis im Dreieck ist .
Also ist .
Formt man um und löst nach l auf und fasst die rechte Seite zusammen, dann ergibt sich .
Setzt man den Term für l in die Formel für die Mantelfläche ein, so ergibt sichDie Höhe ist die Variable für die Mantelfläche .
a) Bestimme die Definitionsmenge. b) Welcher Grenzwert ergibt sich für die Mantelfläche für ? |
a)
b)