Quadratische Funktionen 2 - Köln-Arena: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 7: Zeile 7:
 
{{Lösung versteckt|1=
 
{{Lösung versteckt|1=
 
a = -0,15, c = 2,1, also <math>f(x) = -0,15 x^2 + 2,1</math> }}
 
a = -0,15, c = 2,1, also <math>f(x) = -0,15 x^2 + 2,1</math> }}
 +
 +
  
 
{{Merke|Der Koeffizient von <math>x^2</math> auch negativ sein kann. Der Graph ist dann eine nach unten geöffnete Parabel.}}  
 
{{Merke|Der Koeffizient von <math>x^2</math> auch negativ sein kann. Der Graph ist dann eine nach unten geöffnete Parabel.}}  
Zeile 18: Zeile 20:
 
{{Lösung versteckt|1=
 
{{Lösung versteckt|1=
 
a = -0,15, b = 1,45, c = 0,8, also <math>f(x) = -0,15 x^2 +1,45x + 0,8</math> }}
 
a = -0,15, b = 1,45, c = 0,8, also <math>f(x) = -0,15 x^2 +1,45x + 0,8</math> }}
 +
 +
  
 
Durch [[Quadratische_Funktionen_2_-_quadratische_Ergänzung|quadratische Ergänzung]] kannst du den Funktionsterm <math>a x^2 + bx + c</math> auf die Form <math> a(x-d)^2 + e</math> bringen. Im folgenden Applet ist die quadratische Funktion in dieser Form gegeben. Finde die Parameter a, d, e.
 
Durch [[Quadratische_Funktionen_2_-_quadratische_Ergänzung|quadratische Ergänzung]] kannst du den Funktionsterm <math>a x^2 + bx + c</math> auf die Form <math> a(x-d)^2 + e</math> bringen. Im folgenden Applet ist die quadratische Funktion in dieser Form gegeben. Finde die Parameter a, d, e.
Zeile 26: Zeile 30:
 
{{Lösung versteckt|1=
 
{{Lösung versteckt|1=
 
a= -0,15, d = 4,85, e = 4,3, also <math>f(x) = -0,15(x - 4,85)^2 + 4,3</math> }}
 
a= -0,15, d = 4,85, e = 4,3, also <math>f(x) = -0,15(x - 4,85)^2 + 4,3</math> }}
 +
 +
  
 
{{Aufgabe|
 
{{Aufgabe|
Zeile 40: Zeile 46:
  
  
Als nächstes wollen wir untersuchen, welchen Einfluss die Parameter a, d und e in der Funktionsgleichung <math>f(x) = a (x - d)^2 + c</math> auf den Graphen haben.
 
  
Weiter mit [[Quadratische_Funktionen_2_-_Einfluss_der_Parameter|'''Einfluss der Parameter''']]
+
{|border="0" cellspacing="0" cellpadding="4"
 +
|align = "left" width="120"|[[Bild:Maehnrot.jpg|100px]]
 +
|align = "left"|'''Als nächstes wollen wir untersuchen, welchen Einfluss die Parameter a, d und e in der Funktionsgleichung <math>f(x) = a (x - d)^2 + c</math> auf den Graphen haben. '''
 +
 +
[[Bild:Pfeil.gif]] &nbsp; [[Quadratische_Funktionen_2_-_Einfluss_der_Parameter|'''Hier geht es weiter''']]'''.'''
 +
 
 +
|}

Version vom 6. Juli 2011, 20:05 Uhr

Die Köln-Arena wird von einem parabelförmigen Bogen überspannt. Parabeln kennst du als Graphen quadratischer Funktionen. Hier ist die Parabel allerdings nach unten geöffnet. Finde mit Hilfe des Applets die Parameter a und c zur quadratischen Funktion f(x) = a x^2 + c.



a = -0,15, c = 2,1, also f(x) = -0,15 x^2 + 2,1


Nuvola apps kig.png   Merke

Der Koeffizient von x^2 auch negativ sein kann. Der Graph ist dann eine nach unten geöffnete Parabel.

Liegt das Bild nicht so im Koordinatensystem, dass der Scheitel auf der y-Achse ist, so kann man trotzdem eine Parabel über den Bogen legen. Es ist ja immer noch das gleiche Bild. Die quadratische Funktion hat dann allerdings die Funktionsgleichung f(x) = a x^2 + bx + c mit den Parameter a, b, c.
Finde mit Hilfe des Applets die Werte für a, b und c.


a = -0,15, b = 1,45, c = 0,8, also f(x) = -0,15 x^2 +1,45x + 0,8


Durch quadratische Ergänzung kannst du den Funktionsterm a x^2 + bx + c auf die Form  a(x-d)^2 + e bringen. Im folgenden Applet ist die quadratische Funktion in dieser Form gegeben. Finde die Parameter a, d, e.


a= -0,15, d = 4,85, e = 4,3, also f(x) = -0,15(x - 4,85)^2 + 4,3


Stift.gif   Aufgabe
  1. Was kannst du über die Parameter a, b, c in  f(x) = a x^2 + bx + c aussagen, wenn der Scheitel der Parabel auf der y-Achse liegt?
  2. Was kannst du über die Parameter a, d, e in  f(x) = a (x - d)^2 + e aussagen, wenn der Scheitel der Parabel auf der y-Achse liegt?
  3. Für welche Werte von a ist die Parabel nach unten geöffnet?
  4. Für welche Werte von a ist die Parabel nach oben geöffnet?

  1. b = 0
  2. d = 0
  3. a < 0
  4. a > 0


Maehnrot.jpg Als nächstes wollen wir untersuchen, welchen Einfluss die Parameter a, d und e in der Funktionsgleichung f(x) = a (x - d)^2 + c auf den Graphen haben.

Pfeil.gif   Hier geht es weiter.