Quadratische Funktionen 2 - Aufgaben: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 87: Zeile 87:
  
  
Beim Bremsen eines Pkws ist der also Zusammenhang zwischen der Geschwindigkeit und dem zurückgelegten Weg durch eine quadratische Funktion der Form '''f(x) = ax<sup>2</sup> + bx''' beschrieben, wobei der reinquadratische Teil den Bremsweg und der lineare Teil den Reaktionsweg bestimmt.<br>  
+
Beim Bremsen eines Pkws ist der also Zusammenhang zwischen der Geschwindigkeit und dem zurückgelegten Weg durch eine quadratische Funktion der Form <br>
 +
'''f(x) = ax<sup>2</sup> + bx''' beschrieben, wobei der reinquadratische Teil den Bremsweg und der lineare Teil den Reaktionsweg bestimmt.<br>  
  
 
{|border="0" cellspacing="0" cellpadding="4"
 
{|border="0" cellspacing="0" cellpadding="4"

Version vom 9. August 2011, 17:46 Uhr

Startseite - 1. Bremsweg - 2. Unterschiedliche Straßenverhältnisse - 3. Übungen 1 - 4. Köln-Arena - 5. Einfluss der Parameter in der Scheitelform -
6. Übungen 2 - 7. Allgemeine quadratische Funktion - 8. Übungen 3 - 9. Aufgaben


Hier lernst du, wenn du noch Lust hast, einiges über den Anhalteweg eines Autos.

Inhaltsverzeichnis

 [Verbergen

Der Anhalteweg

Wir haben oben gesehen, dass man selbst bei relativ moderaten Geschwindigkeiten mit beachtlichen Bremswegen rechnen muss. Dabei blieb jedoch noch unberücksichtigt, dass der Anhalteweg nicht allein der reine Bremsweg ist, sondern dass zum Bremsweg auch noch der sogenannte Reaktionsweg hinzukommt.
Der Bremsweg ist derjenige Weg, den das Fahrzeug vom Beginn des Bremsvorgangs bis zum Stillstand zurücklegt. Er berücksichtigt also nicht, dass man nach dem Auftreten des Hindernisses eine gewisse Zeit (die Reaktionszeit') benötigt, bis man überhaupt reagieren kann und bremst. Der Weg, den das Fahrzeug angesichts der Reaktionszeit noch ungebremst zurücklegt, nennt man Reaktionsweg.


  Aufgabe 1  Stift.gif
  1. Man kann davon ausgehen, dass die Reaktionszeit bei einem gewöhnlichen Autofahrer nicht länger als eine Sekunde ist. Berechne den Reaktionsweg , der sich bei einer Geschwindigkeit von 30 km/h, 50 km/h, 100 km/h aus einer Reaktionszeit von einer Sekunde ergibt.
  2. Ermittle eine Formel, mit Hilfe derer man den Reaktionsweg aus der Geschwindigkeit berechnen kann. Geh dabei wieder von einer Reaktionszeit von einer Sekunde aus.
  3. Ermittle eine möglichst einfache Formel, mit Hilfe derer man den Anhalteweg aus der Geschwindigkeit berechnen kann.
  4. Stelle den Anhalteweg in Abhängigkeit von der Geschwindigkeit grafisch dar. Gehe wieder von einer Reaktionszeit von 1 Sekunde aus und verwende aB = 5 m/s2.
[Lösung anzeigen]



Experimentieren mit einem Applet zum Anhalteweg

  Aufgabe 2  Stift.gif
  1. Experimentiere mit dem nachfolgenden Applet.
  2. Beschreibe, welchen Einfluss Geschwindigkeit, Bremsbeschleunigung und Reaktionszeit auf den Anhalteweg haben.
  3. Bei welchem Wert für aB ist der Anhalteweg bei einer Geschwindigkeit von 70 km/h und einer Reaktionszeit von 1,5 s ungefähr 70 m lang?
[Lösung anzeigen]


Im folgenden Applet ist der Zusammenhang zwischen Geschwindigkeit und Anhalteweg dargestellt worden. Mit Hilfe der Schieberegler können Geschwindigkeit v, Bremsbeschleunigung aB und Reaktionszeit tR variiert werden.


 


  Aufgabe 3  Stift.gif
Es passierte an einem sonnigen Tag, irgendwo auf einer idyllischen Straße durch einen lichten Wald. Herr Meier fuhr in seinem Cabriolet mit entspannten 80 km/h die kerzengerade Straße entlang, als plötzlich 60 m vor ihm ein Hirsch auf die Straße läuft...
1. Wie geht die Geschichte aus, wenn Herr Meier
a) hochkonzentriert auf den Verkehr geachtet hat (tR = 1,0 s),
b) er gerade mit einem Freund telefoniert hat (tR = 2,0 s)?
2. Angenommen, Herr Meier hatte zum Mittagessen zwei Bier und einen Verdauungsschnaps getrunken. Seine Reaktionszeit wäre damit auf 2,5 s gestiegen. Wie schnell hätte er höchstens fahren dürfen, um noch rechtzeitig zum Stehen zu kommen?
Verwende jeweils aB = 7 m/s2
[Lösung anzeigen]


Den Einfluss der verschiedenen Faktoren auf die Länge des Anhalteweges kannst du auch mit diesem Applet untersuchen.


Beim Bremsen eines Pkws ist der also Zusammenhang zwischen der Geschwindigkeit und dem zurückgelegten Weg durch eine quadratische Funktion der Form
f(x) = ax2 + bx beschrieben, wobei der reinquadratische Teil den Bremsweg und der lineare Teil den Reaktionsweg bestimmt.

  Aufgabe 4  Stift.gif

Welche Bedeutung hat der konstante Teil des Funktionsterms im Anwendungsbeispiel "Abbremsen eines Pkw"?

[Lösung anzeigen]


Übungen

Falls es Probleme mit der Ansicht gibt, bitte Firefox als Browser verwenden!

Aufgabe 5: Anhalteweg

Die Funktion s(v) = 0,1v2 + 1,5v ist ein Beispiel für eine Funktion, die den Zusammenhang zwischen der anfänglichen Geschwindigkeit eines Fahrzeuges in m/s und dem Anhalteweg für einen konkreten Bremsvorgang angibt.

  1. Welchen Wert hat in diesem Beispiel die Reaktionszeit tR?
  2. Welchen Wert hat die Bremsbeschleunigung aB?
  3. Wie lang ist der Anhalteweg bei einer anfänglichen Geschwindigkeit von 72 km/h (also 20 m/s)?
  4. Wie könnte der Anhalteweg verringert werden?


 [Lösung anzeigen]

Aufgabe 6: Bestimme a und b

Die Parabel hat die Funktionsgleichung f(x) = ax2 + bx.

Finde heraus, welche Werte a und b besitzen und erkläre wie du vorgegangen bist.

Hilfe: [Anzeigen]


 [Lösung anzeigen]

Üb2 Parabel 7.jpg



Aufgabe 7: Term und Graph zuordnen

Ordne den Funktionsgraphen den richtigen Term zu.

Üb2 Parabel1.jpg Üb2 Parabel6.jpg Üb2 Parabel3.jpg Üb2 Parabel5.jpg Üb2 Parabel4.jpg Üb2 Parabel2.jpg
                                                                                                                       

-x2 - 2x0,5x2 + 2xx2 - 2xx2 + 2x0,5x2 - 2x-x2 + 2x


















Aufgabe 8

Kreuze jeweils alle richtigen Aussagen an.

f(x) = 2x2 - 4x

f(x) = - 0,25x2 + 3x

Welche der Termpaare gehören zu Funktionen, deren Graphen bezüglich der y-Achse symmetrisch zueinander sind?

prüfen!



Weiterführende Links

Videoanalyse: Geschwindigkeit und Bremswege von Wolfgang Riemer