Monotonie: Unterschied zwischen den Versionen
Zeile 129: | Zeile 129: | ||
</div> | </div> | ||
+ | |||
+ | {{Arbeiten| | ||
+ | NUMMER=3| | ||
+ | ARBEIT= Bestimme die Parameterwerte r, für die die Funktion <math> f: x \rightarrow rx^2 - 2</math> <br> | ||
+ | # im Intervall [1;3] monoton zunehmend ist. | ||
+ | # im Intervall [1;3] monoton abnehmend ist. | ||
+ | # im Intervall [-2,5;-1] monoton zunehmend ist. | ||
+ | # im Intervall [-2,5;-1] monoton abnehmend ist. | ||
+ | # im Intervall [-1;1] monoton zunehmend ist. | ||
+ | |||
+ | <ggb_applet width="566" height="370" version="4.0" ggbBase64="UEsDBBQACAAIAPQ9I0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAPQ9I0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vjrb9s2EP/c/hUHfWqH2ib1slzYLdYCxQKk3YB0w7APAyiJttlIoiZSfhT943ckJVlOH0iToR1qxOHreM/fHS9ZPj+UBex4o4SsVh6dEg94lclcVJuV1+r1JPGeP3u43HC54WnDYC2bkumVFxpKka88FiRzQpP5JAx4PAkJ4ZNkHpJJHCZxukizRURiD+CgxNNKvmElVzXL+FW25SW7lBnTVvBW6/rpbLbf76e9qKlsNrPNJp0eVO4BqlmplddNniK7s0v7wJL7hNDZn68vHfuJqJRmVcY9MCa04tnDB8u9qHK5h73I9XblRfPQgy0Xm62xaZF4MDNENTqk5pkWO67w6mhpbdZl7VkyVpnzB24GxWCOB7nYiZw3K49MgzAJA59EKGtB/WSBEmUjeKU7YtoJnfXsljvB946vmVmReElLWaTMsIQPH8AnPoEnZqBu8HGIY3dE3B4J3OC7IXRD5GhCdz10pKGjCR1NGHiwE0qkBV95a1YodKGo1g2Gb1grfSy41afbOJlPn6BNSrxH4oAgTpzPcZ+QJ+Yb4zc0B7NzI+lIqm7arxTai4zi+PYi/XsZGvQy/U+Z6UefMTP+glBn923spNFIJoqyP/b7kcTgS2belOjW9xMYh9/ExOWsT5Vllx2gtoa2Q4/mpTL5EiwgWhjYU4gwN+I5ojwCusBh7gNmA9AIwgiXNIHYjHMI5ngQQgAJGDoagE2OKMFf4dwyiyFCZmZ3jjkJFAWFEAVAbU6FgJkENi8xR/0AKaIIIrxkxFPfsAhiCGNcBQmEqKNJyTlFwgAv4hrF+xBQCMxlOgc/htjwo6FJ9TgxqiNLH2ICMTUMMasxo102I30CgbEm7twlqrrVZy7KyryfalkPsUBqrEensufq01lVfLAsWMoLfCiuTCQBdqwwGWEFrWWloQ+i7/Y2Dau3IlNXXGu8peAd27FLpvnhFVKrXralzWSlfmukfimLtqwUQCYLMugsCzqa+4PWuAhGB+H4IBodxKP5/JNyJZ5AqzjKl43qyVmeXxiKU2lAT/5aFccXDWfXtRTnZixn9s1Z8jYrRC5Y9QeC1UgxfoHhCTLlqn+CgtDvFZFNfnVUiGA4/MUbiTUmDqeL8Qdz7OiOaEimZPwxhSljJvnCxfmlBKUdP3fmZPPdECJ24IP1m8Zkdme5WVyoF7I4bVn7X7Jat43tHlCHxlj1c7UpuMWILbf4NGfXqTxcOXAEjtfbY40r4hRIN9bvgLXBjyIk6MbUjZbGaDZQEUtDLAXp0Sby4ZwufEthx9SNlgrh61TrLKW9mZT0YoSyFY14Z3ljsW8e+rYS+rJfaJFdd5ZSR/+mLVM+IOicJf2PWC5nNxC2vOZNxYsO0BjJVrbK5ecI6znPRIlLd9A5hJlg/Y4KuN2cbxre613Yvsy5y56SMVY/2rasXjWyvKh2bxEJNxRYznotlyprRG0AByk+Atf8hKlcKIZvSD6+ZzIQTc/MW4Hu0cY1mJut3srGtl5YUnA0iVfwEvss0BZcVVvyRmSDoxvbw6FSbae36X6t5sbLINN3WOtuBOcURTz+DPyAFfWWmc6PdiBjR96cucZyey3zXnAntjAtI5QCn8AJwr1kBywPyC9VWAY1Ns0Yi+rUNDvNujKCDYdpyQ+m5TKTo3kwzWQtDiOHoo/Ee8QEOzPmlAYaK/Q1tqHK5qrustJOfhF5zqtBW1YhemwMsEjVzlzA94E7ZA9XazTf1oNR5LvAmBAd6galGTadi9f4F8jBvESPDo9hBQ38BIe/H/mPYQK+e5jOw7puKwsF78TgyzEcpcBtgkhuGURyV1eeuePMNMNrUJvdx6yIuroXBXe37O4B70qEMuikHTgtNt8j0IesuwsI+T+Vu6JciRRlXYhM6K/wa/qD+jX4zn7N7uNXStxDbfz7//KrP42+q1vzH9Ot36QKzMatg+3Pu/81PfsXUEsHCMyFi3W1BQAACBMAAFBLAQIUABQACAAIAPQ9I0DWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgA9D0jQMyFi3W1BQAACBMAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABMBgAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> | ||
+ | |||
+ | }} | ||
+ | |||
+ | {{Lösung versteckt| | ||
+ | # r > 0 | ||
+ | # r < 0 | ||
+ | # r < 0 | ||
+ | # r > 0 | ||
+ | # es gibt kein r }} | ||
+ | |||
---- | ---- | ||
zurück zu [[Funktionen_Einstieg/Eigenschaften von Funktionen|Eigenschaften von Funktionen]] | zurück zu [[Funktionen_Einstieg/Eigenschaften von Funktionen|Eigenschaften von Funktionen]] |
Version vom 3. Januar 2012, 07:54 Uhr
zurück zu Eigenschaften von Funktionen
Dieser Begriff des Ansteigens eines Funktionsgraphen fassen wir genauer und benennen ihn.
Eine Funktion heißt streng monoton zunehmend im Intervall [a;b], wenn für alle gilt: |
Auch diesen Begriff des Fallens eines Funktionsgraphen fassen wir - analog zu oben - genauer und benennen ihn.
Eine Funktion heißt streng monoton abnehmend im Intervall [a;b], wenn für alle gilt: |
Hier wird nochmals der Begriff Monotonie erklärt:
Man könnte diese Begriffe monoton zunehmend und monoton abnehmend auch für die Funktionsgraphen übernehmen, hier verwendet man allerdings monoton steigend und monoton fallend.
Eine Funktionsgraph heißt streng monoton steigend im Intervall [a;b], wenn die Funktion dort streng monoton zunehmend ist, Eine Funktionsgraph heißt streng monoton fallend im Intervall [a;b], wenn die Funktion dort streng monoton abnehmend ist, |
Teste dich! Klicke im folgenden Quiz auf die richtigen Zuordnungen! |
(streng monoton steigend) (!streng monoton fallend) (!weder noch)
(!streng monoton steigend) (streng monoton fallend) (!weder noch)
(!streng monoton steigend) (!streng monoton fallend) (weder noch)
(!streng monoton steigend) (streng monoton fallend) (!weder noch)
(streng monoton steigend) (!streng monoton fallend) (!weder noch)
(!streng monoton steigend) (!streng monoton fallend) (weder noch)
(streng monoton steigend) (!streng monoton fallend) (!weder noch)
Für die folgende Multiple-Choice-Aufgabe kannst du als Hilfe GeoGebra öffnen, dir die Graphen der Funktionen zeichnen lassen und dann die Fragen beantworten.
im Intervall [2;8] (streng monoton zunehmend) (!streng monoton abnehmend) (!weder noch)
im Intervall [] (!streng monoton zunehmend) (streng monoton abnehmend) (!weder noch)
im Intervall [-1;4] (streng monoton zunehmend) (!streng monoton abnehmend) (!weder noch)
im Intervall [-1;4] (streng monoton zunehmend) (!streng monoton abnehmend) (!weder noch)
im Intervall [-1;4] (!streng monoton zunehmend) (!streng monoton abnehmend) (weder noch)
im Intervall [2;8] (streng monoton zunehmend) (!streng monoton abnehmend) (!weder noch)
mit im Intervall [-4;-1] (!streng monoton zunehmend) (streng monoton abnehmend) (!weder noch)
mit im Intervall [-3;9] (streng monoton zunehmend) (!streng monoton abnehmend) (!weder noch)
Bestimme die Parameterwerte r, für die die Funktion
|
- r > 0
- r < 0
- r < 0
- r > 0
- es gibt kein r
zurück zu Eigenschaften von Funktionen