Monotonie: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 129: Zeile 129:
  
 
</div>
 
</div>
 +
 +
{{Arbeiten|
 +
NUMMER=3|
 +
ARBEIT= Bestimme die Parameterwerte r, für die die Funktion <math> f: x \rightarrow rx^2 - 2</math> <br>
 +
# im Intervall [1;3] monoton zunehmend ist.
 +
# im Intervall [1;3] monoton abnehmend ist.
 +
# im Intervall [-2,5;-1] monoton zunehmend ist.
 +
# im Intervall [-2,5;-1] monoton abnehmend ist.
 +
# im Intervall [-1;1] monoton zunehmend ist.
 +
 +
<ggb_applet width="566" height="370"  version="4.0" ggbBase64="UEsDBBQACAAIAPQ9I0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAPQ9I0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vjrb9s2EP/c/hUHfWqH2ib1slzYLdYCxQKk3YB0w7APAyiJttlIoiZSfhT943ckJVlOH0iToR1qxOHreM/fHS9ZPj+UBex4o4SsVh6dEg94lclcVJuV1+r1JPGeP3u43HC54WnDYC2bkumVFxpKka88FiRzQpP5JAx4PAkJ4ZNkHpJJHCZxukizRURiD+CgxNNKvmElVzXL+FW25SW7lBnTVvBW6/rpbLbf76e9qKlsNrPNJp0eVO4BqlmplddNniK7s0v7wJL7hNDZn68vHfuJqJRmVcY9MCa04tnDB8u9qHK5h73I9XblRfPQgy0Xm62xaZF4MDNENTqk5pkWO67w6mhpbdZl7VkyVpnzB24GxWCOB7nYiZw3K49MgzAJA59EKGtB/WSBEmUjeKU7YtoJnfXsljvB946vmVmReElLWaTMsIQPH8AnPoEnZqBu8HGIY3dE3B4J3OC7IXRD5GhCdz10pKGjCR1NGHiwE0qkBV95a1YodKGo1g2Gb1grfSy41afbOJlPn6BNSrxH4oAgTpzPcZ+QJ+Yb4zc0B7NzI+lIqm7arxTai4zi+PYi/XsZGvQy/U+Z6UefMTP+glBn923spNFIJoqyP/b7kcTgS2belOjW9xMYh9/ExOWsT5Vllx2gtoa2Q4/mpTL5EiwgWhjYU4gwN+I5ojwCusBh7gNmA9AIwgiXNIHYjHMI5ngQQgAJGDoagE2OKMFf4dwyiyFCZmZ3jjkJFAWFEAVAbU6FgJkENi8xR/0AKaIIIrxkxFPfsAhiCGNcBQmEqKNJyTlFwgAv4hrF+xBQCMxlOgc/htjwo6FJ9TgxqiNLH2ICMTUMMasxo102I30CgbEm7twlqrrVZy7KyryfalkPsUBqrEensufq01lVfLAsWMoLfCiuTCQBdqwwGWEFrWWloQ+i7/Y2Dau3IlNXXGu8peAd27FLpvnhFVKrXralzWSlfmukfimLtqwUQCYLMugsCzqa+4PWuAhGB+H4IBodxKP5/JNyJZ5AqzjKl43qyVmeXxiKU2lAT/5aFccXDWfXtRTnZixn9s1Z8jYrRC5Y9QeC1UgxfoHhCTLlqn+CgtDvFZFNfnVUiGA4/MUbiTUmDqeL8Qdz7OiOaEimZPwxhSljJvnCxfmlBKUdP3fmZPPdECJ24IP1m8Zkdme5WVyoF7I4bVn7X7Jat43tHlCHxlj1c7UpuMWILbf4NGfXqTxcOXAEjtfbY40r4hRIN9bvgLXBjyIk6MbUjZbGaDZQEUtDLAXp0Sby4ZwufEthx9SNlgrh61TrLKW9mZT0YoSyFY14Z3ljsW8e+rYS+rJfaJFdd5ZSR/+mLVM+IOicJf2PWC5nNxC2vOZNxYsO0BjJVrbK5ecI6znPRIlLd9A5hJlg/Y4KuN2cbxre613Yvsy5y56SMVY/2rasXjWyvKh2bxEJNxRYznotlyprRG0AByk+Atf8hKlcKIZvSD6+ZzIQTc/MW4Hu0cY1mJut3srGtl5YUnA0iVfwEvss0BZcVVvyRmSDoxvbw6FSbae36X6t5sbLINN3WOtuBOcURTz+DPyAFfWWmc6PdiBjR96cucZyey3zXnAntjAtI5QCn8AJwr1kBywPyC9VWAY1Ns0Yi+rUNDvNujKCDYdpyQ+m5TKTo3kwzWQtDiOHoo/Ee8QEOzPmlAYaK/Q1tqHK5qrustJOfhF5zqtBW1YhemwMsEjVzlzA94E7ZA9XazTf1oNR5LvAmBAd6galGTadi9f4F8jBvESPDo9hBQ38BIe/H/mPYQK+e5jOw7puKwsF78TgyzEcpcBtgkhuGURyV1eeuePMNMNrUJvdx6yIuroXBXe37O4B70qEMuikHTgtNt8j0IesuwsI+T+Vu6JciRRlXYhM6K/wa/qD+jX4zn7N7uNXStxDbfz7//KrP42+q1vzH9Ot36QKzMatg+3Pu/81PfsXUEsHCMyFi3W1BQAACBMAAFBLAQIUABQACAAIAPQ9I0DWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgA9D0jQMyFi3W1BQAACBMAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABMBgAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
 +
}}
 +
 +
{{Lösung versteckt|
 +
# r > 0
 +
# r < 0
 +
# r < 0
 +
# r > 0
 +
# es gibt kein r }}
 +
  
 
----
 
----
  
 
zurück zu [[Funktionen_Einstieg/Eigenschaften von Funktionen|Eigenschaften von Funktionen]]
 
zurück zu [[Funktionen_Einstieg/Eigenschaften von Funktionen|Eigenschaften von Funktionen]]

Version vom 3. Januar 2012, 08:54 Uhr

zurück zu Eigenschaften von Funktionen


  Aufgabe 1  Stift.gif

Betrachte die folgenden Funktionen im angegebenen Intervall. Die Funktionen sind durch Funktionsterm und Graph gegeben.

a) f:x \rightarrow x^2 in R^+
Monotonie quadratfunktion.jpg
b) f:x \rightarrow sin(x) in [0;1]
Montonie sinusfunktion.jpg
c) f:x \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1 in [0;3]
Monotonie kubikfunktion.jpg</center

Was fällt dir auf? Was haben die drei Funktionsgraphen in den angegebenen Intervallen gemeinsam?


[Lösung anzeigen]

Dieser Begriff des Ansteigens eines Funktionsgraphen fassen wir genauer und benennen ihn.

Nuvola apps kig.png   Merke

Eine Funktion  f heißt streng monoton zunehmend im Intervall [a;b], wenn für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) < f(x_2)


  Aufgabe 2  Stift.gif

Betrachte die folgenden Funktionen in den angegebenen Intervallen Quadratfunktion in den angegebenen Intervallen

a) f:x \rightarrow x^2 in R^-
Monotonie quadratfunktion2.jpg

b) f:x \rightarrow sin(x) in [2;3]
Montonie sinusfunktion.jpg
c) f:x \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1 in [-3;0]
Monotonie kubikfunktion2.jpg

Was stellst du nun fest? Was haben alle drei Graphen in den angegebenen Intervallen gemeinsam?


[Lösung anzeigen]


Auch diesen Begriff des Fallens eines Funktionsgraphen fassen wir - analog zu oben - genauer und benennen ihn.

Nuvola apps kig.png   Merke

Eine Funktion  f heißt streng monoton abnehmend im Intervall [a;b], wenn für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) > f(x_2)

Hier wird nochmals der Begriff Monotonie erklärt:


Man könnte diese Begriffe monoton zunehmend und monoton abnehmend auch für die Funktionsgraphen übernehmen, hier verwendet man allerdings monoton steigend und monoton fallend.

Nuvola apps kig.png   Merke

Eine Funktionsgraph  G_f heißt streng monoton steigend im Intervall [a;b], wenn die Funktion f dort streng monoton zunehmend ist,
d.h.für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) < f(x_2)

Eine Funktionsgraph  G_f heißt streng monoton fallend im Intervall [a;b], wenn die Funktion f dort streng monoton abnehmend ist,
d.h. für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) > f(x_2)


  Aufgabe 3  Stift.gif

Teste dich! Klicke im folgenden Quiz auf die richtigen Zuordnungen!


Monotonie f1.jpg

Monotonie f2.jpg

Monotonie f5.jpg

Monotonie f3.jpg

Monotonie f6.jpg

Monotonie f4.jpg

Monotonie f7.jpg

prüfen!

Für die folgende Multiple-Choice-Aufgabe kannst du als Hilfe GeoGebra öffnen, dir die Graphen der Funktionen zeichnen lassen und dann die Fragen beantworten.

f:x \rightarrow x^2 im Intervall [2;8]

f:x \rightarrow 2sin(x) + 3 im Intervall [\pi;\frac{3}{2}\pi]

f:x \rightarrow 2^x im Intervall [-1;4]

f:x \rightarrow log_2(x) im Intervall [-1;4]

f:x \rightarrow 4-x^2 im Intervall [-1;4]

f:x \rightarrow x^2+2x+1 im Intervall [2;8]

f:x \rightarrow x^n mit  n gerade im Intervall [-4;-1]

f:x \rightarrow x^n mit  n ungerade im Intervall [-3;9]

prüfen!

  Aufgabe 3  Stift.gif

Bestimme die Parameterwerte r, für die die Funktion  f: x \rightarrow rx^2 - 2

  1. im Intervall [1;3] monoton zunehmend ist.
  2. im Intervall [1;3] monoton abnehmend ist.
  3. im Intervall [-2,5;-1] monoton zunehmend ist.
  4. im Intervall [-2,5;-1] monoton abnehmend ist.
  5. im Intervall [-1;1] monoton zunehmend ist.


[Lösung anzeigen]



zurück zu Eigenschaften von Funktionen