Monotonie: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 7: Zeile 7:
 
Betrachte die folgenden Funktionen im angegebenen Intervall. Die Funktionen sind durch Funktionsterm und Graph gegeben. <br>
 
Betrachte die folgenden Funktionen im angegebenen Intervall. Die Funktionen sind durch Funktionsterm und Graph gegeben. <br>
  
a) <math>f:x \rightarrow x^2</math> in <math>R^+</math> <center>[[datei:Monotonie_quadratfunktion.jpg]]</center>
+
a) <math>f:x \rightarrow x^2</math> für <math>x \in R^+</math> <center>[[datei:Monotonie_quadratfunktion.jpg]]</center>
  
b) <math>f:x \rightarrow sin(x)</math> in [0;1] <center>[[datei:Montonie_sinusfunktion.jpg‎]]</center>
+
b) <math>f:x \rightarrow sin(x)</math> im Intervall [0;1] <center>[[datei:Montonie_sinusfunktion.jpg‎]]</center>
  
c) <math>f:x \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1</math> in [0;3] <center>[[datei:Monotonie_kubikfunktion.jpg]]</center
+
c) <math>f:x \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1</math> im Intervall [0;3] <center>[[datei:Monotonie_kubikfunktion.jpg]]</center
  
 
Was fällt dir auf?  
 
Was fällt dir auf?  
Zeile 33: Zeile 33:
 
Betrachte die folgenden Funktionen in den angegebenen Intervallen Quadratfunktion in den angegebenen Intervallen
 
Betrachte die folgenden Funktionen in den angegebenen Intervallen Quadratfunktion in den angegebenen Intervallen
 
</center>
 
</center>
a) <math>f:x \rightarrow x^2</math> in <math>R^-</math>  <center>[[datei:Monotonie_quadratfunktion2.jpg]]</center><br>
+
a) <math>f:x \rightarrow x^2</math> für <math>x \in R^-</math>  <center>[[datei:Monotonie_quadratfunktion2.jpg]]</center><br>
  
b) <math>f:x \rightarrow sin(x)</math> in [2;3] <center>[[datei:Montonie_sinusfunktion.jpg‎]]</center>
+
b) <math>f:x \rightarrow sin(x)</math> im Intervall [2;3] <center>[[datei:Montonie_sinusfunktion.jpg‎]]</center>
  
c) <math>f:x \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1</math> in [-3;0] <center>[[datei:Monotonie_kubikfunktion2.jpg]]</center>
+
c) <math>f:x \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1</math> im Intervall [-3;0] <center>[[datei:Monotonie_kubikfunktion2.jpg]]</center>
  
 
Was stellst du nun fest? Was haben alle drei Graphen in den angegebenen Intervallen gemeinsam?
 
Was stellst du nun fest? Was haben alle drei Graphen in den angegebenen Intervallen gemeinsam?
Zeile 145: Zeile 145:
 
# im Intervall [-2,5;-1] monoton abnehmend ist.
 
# im Intervall [-2,5;-1] monoton abnehmend ist.
 
# im Intervall [-1;1] monoton zunehmend ist.
 
# im Intervall [-1;1] monoton zunehmend ist.
 
+
<center>
 
<ggb_applet width="566" height="370"  version="4.0" ggbBase64="UEsDBBQACAAIAPQ9I0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAPQ9I0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vjrb9s2EP/c/hUHfWqH2ib1slzYLdYCxQKk3YB0w7APAyiJttlIoiZSfhT943ckJVlOH0iToR1qxOHreM/fHS9ZPj+UBex4o4SsVh6dEg94lclcVJuV1+r1JPGeP3u43HC54WnDYC2bkumVFxpKka88FiRzQpP5JAx4PAkJ4ZNkHpJJHCZxukizRURiD+CgxNNKvmElVzXL+FW25SW7lBnTVvBW6/rpbLbf76e9qKlsNrPNJp0eVO4BqlmplddNniK7s0v7wJL7hNDZn68vHfuJqJRmVcY9MCa04tnDB8u9qHK5h73I9XblRfPQgy0Xm62xaZF4MDNENTqk5pkWO67w6mhpbdZl7VkyVpnzB24GxWCOB7nYiZw3K49MgzAJA59EKGtB/WSBEmUjeKU7YtoJnfXsljvB946vmVmReElLWaTMsIQPH8AnPoEnZqBu8HGIY3dE3B4J3OC7IXRD5GhCdz10pKGjCR1NGHiwE0qkBV95a1YodKGo1g2Gb1grfSy41afbOJlPn6BNSrxH4oAgTpzPcZ+QJ+Yb4zc0B7NzI+lIqm7arxTai4zi+PYi/XsZGvQy/U+Z6UefMTP+glBn923spNFIJoqyP/b7kcTgS2belOjW9xMYh9/ExOWsT5Vllx2gtoa2Q4/mpTL5EiwgWhjYU4gwN+I5ojwCusBh7gNmA9AIwgiXNIHYjHMI5ngQQgAJGDoagE2OKMFf4dwyiyFCZmZ3jjkJFAWFEAVAbU6FgJkENi8xR/0AKaIIIrxkxFPfsAhiCGNcBQmEqKNJyTlFwgAv4hrF+xBQCMxlOgc/htjwo6FJ9TgxqiNLH2ICMTUMMasxo102I30CgbEm7twlqrrVZy7KyryfalkPsUBqrEensufq01lVfLAsWMoLfCiuTCQBdqwwGWEFrWWloQ+i7/Y2Dau3IlNXXGu8peAd27FLpvnhFVKrXralzWSlfmukfimLtqwUQCYLMugsCzqa+4PWuAhGB+H4IBodxKP5/JNyJZ5AqzjKl43qyVmeXxiKU2lAT/5aFccXDWfXtRTnZixn9s1Z8jYrRC5Y9QeC1UgxfoHhCTLlqn+CgtDvFZFNfnVUiGA4/MUbiTUmDqeL8Qdz7OiOaEimZPwxhSljJvnCxfmlBKUdP3fmZPPdECJ24IP1m8Zkdme5WVyoF7I4bVn7X7Jat43tHlCHxlj1c7UpuMWILbf4NGfXqTxcOXAEjtfbY40r4hRIN9bvgLXBjyIk6MbUjZbGaDZQEUtDLAXp0Sby4ZwufEthx9SNlgrh61TrLKW9mZT0YoSyFY14Z3ljsW8e+rYS+rJfaJFdd5ZSR/+mLVM+IOicJf2PWC5nNxC2vOZNxYsO0BjJVrbK5ecI6znPRIlLd9A5hJlg/Y4KuN2cbxre613Yvsy5y56SMVY/2rasXjWyvKh2bxEJNxRYznotlyprRG0AByk+Atf8hKlcKIZvSD6+ZzIQTc/MW4Hu0cY1mJut3srGtl5YUnA0iVfwEvss0BZcVVvyRmSDoxvbw6FSbae36X6t5sbLINN3WOtuBOcURTz+DPyAFfWWmc6PdiBjR96cucZyey3zXnAntjAtI5QCn8AJwr1kBywPyC9VWAY1Ns0Yi+rUNDvNujKCDYdpyQ+m5TKTo3kwzWQtDiOHoo/Ee8QEOzPmlAYaK/Q1tqHK5qrustJOfhF5zqtBW1YhemwMsEjVzlzA94E7ZA9XazTf1oNR5LvAmBAd6galGTadi9f4F8jBvESPDo9hBQ38BIe/H/mPYQK+e5jOw7puKwsF78TgyzEcpcBtgkhuGURyV1eeuePMNMNrUJvdx6yIuroXBXe37O4B70qEMuikHTgtNt8j0IesuwsI+T+Vu6JciRRlXYhM6K/wa/qD+jX4zn7N7uNXStxDbfz7//KrP42+q1vzH9Ot36QKzMatg+3Pu/81PfsXUEsHCMyFi3W1BQAACBMAAFBLAQIUABQACAAIAPQ9I0DWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgA9D0jQMyFi3W1BQAACBMAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABMBgAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<ggb_applet width="566" height="370"  version="4.0" ggbBase64="UEsDBBQACAAIAPQ9I0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAPQ9I0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vjrb9s2EP/c/hUHfWqH2ib1slzYLdYCxQKk3YB0w7APAyiJttlIoiZSfhT943ckJVlOH0iToR1qxOHreM/fHS9ZPj+UBex4o4SsVh6dEg94lclcVJuV1+r1JPGeP3u43HC54WnDYC2bkumVFxpKka88FiRzQpP5JAx4PAkJ4ZNkHpJJHCZxukizRURiD+CgxNNKvmElVzXL+FW25SW7lBnTVvBW6/rpbLbf76e9qKlsNrPNJp0eVO4BqlmplddNniK7s0v7wJL7hNDZn68vHfuJqJRmVcY9MCa04tnDB8u9qHK5h73I9XblRfPQgy0Xm62xaZF4MDNENTqk5pkWO67w6mhpbdZl7VkyVpnzB24GxWCOB7nYiZw3K49MgzAJA59EKGtB/WSBEmUjeKU7YtoJnfXsljvB946vmVmReElLWaTMsIQPH8AnPoEnZqBu8HGIY3dE3B4J3OC7IXRD5GhCdz10pKGjCR1NGHiwE0qkBV95a1YodKGo1g2Gb1grfSy41afbOJlPn6BNSrxH4oAgTpzPcZ+QJ+Yb4zc0B7NzI+lIqm7arxTai4zi+PYi/XsZGvQy/U+Z6UefMTP+glBn923spNFIJoqyP/b7kcTgS2belOjW9xMYh9/ExOWsT5Vllx2gtoa2Q4/mpTL5EiwgWhjYU4gwN+I5ojwCusBh7gNmA9AIwgiXNIHYjHMI5ngQQgAJGDoagE2OKMFf4dwyiyFCZmZ3jjkJFAWFEAVAbU6FgJkENi8xR/0AKaIIIrxkxFPfsAhiCGNcBQmEqKNJyTlFwgAv4hrF+xBQCMxlOgc/htjwo6FJ9TgxqiNLH2ICMTUMMasxo102I30CgbEm7twlqrrVZy7KyryfalkPsUBqrEensufq01lVfLAsWMoLfCiuTCQBdqwwGWEFrWWloQ+i7/Y2Dau3IlNXXGu8peAd27FLpvnhFVKrXralzWSlfmukfimLtqwUQCYLMugsCzqa+4PWuAhGB+H4IBodxKP5/JNyJZ5AqzjKl43qyVmeXxiKU2lAT/5aFccXDWfXtRTnZixn9s1Z8jYrRC5Y9QeC1UgxfoHhCTLlqn+CgtDvFZFNfnVUiGA4/MUbiTUmDqeL8Qdz7OiOaEimZPwxhSljJvnCxfmlBKUdP3fmZPPdECJ24IP1m8Zkdme5WVyoF7I4bVn7X7Jat43tHlCHxlj1c7UpuMWILbf4NGfXqTxcOXAEjtfbY40r4hRIN9bvgLXBjyIk6MbUjZbGaDZQEUtDLAXp0Sby4ZwufEthx9SNlgrh61TrLKW9mZT0YoSyFY14Z3ljsW8e+rYS+rJfaJFdd5ZSR/+mLVM+IOicJf2PWC5nNxC2vOZNxYsO0BjJVrbK5ecI6znPRIlLd9A5hJlg/Y4KuN2cbxre613Yvsy5y56SMVY/2rasXjWyvKh2bxEJNxRYznotlyprRG0AByk+Atf8hKlcKIZvSD6+ZzIQTc/MW4Hu0cY1mJut3srGtl5YUnA0iVfwEvss0BZcVVvyRmSDoxvbw6FSbae36X6t5sbLINN3WOtuBOcURTz+DPyAFfWWmc6PdiBjR96cucZyey3zXnAntjAtI5QCn8AJwr1kBywPyC9VWAY1Ns0Yi+rUNDvNujKCDYdpyQ+m5TKTo3kwzWQtDiOHoo/Ee8QEOzPmlAYaK/Q1tqHK5qrustJOfhF5zqtBW1YhemwMsEjVzlzA94E7ZA9XazTf1oNR5LvAmBAd6galGTadi9f4F8jBvESPDo9hBQ38BIe/H/mPYQK+e5jOw7puKwsF78TgyzEcpcBtgkhuGURyV1eeuePMNMNrUJvdx6yIuroXBXe37O4B70qEMuikHTgtNt8j0IesuwsI+T+Vu6JciRRlXYhM6K/wa/qD+jX4zn7N7uNXStxDbfz7//KrP42+q1vzH9Ot36QKzMatg+3Pu/81PfsXUEsHCMyFi3W1BQAACBMAAFBLAQIUABQACAAIAPQ9I0DWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgA9D0jQMyFi3W1BQAACBMAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABMBgAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
+
</center>
 
}}
 
}}
  
Zeile 162: Zeile 162:
 
# im Intervall [<math> \frac{\pi}{2};\pi</math>] monoton zunehmend ist.
 
# im Intervall [<math> \frac{\pi}{2};\pi</math>] monoton zunehmend ist.
 
# im Intervall [<math> \frac{\pi}{2};\pi</math>] monoton abnehmend ist.
 
# im Intervall [<math> \frac{\pi}{2};\pi</math>] monoton abnehmend ist.
 
+
<center>
 
<ggb_applet width="566" height="260"  version="4.0" ggbBase64="UEsDBBQACAAIAFM/I0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAFM/I0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vdbb9s2FH5Of8WBnrqttklR18JusW4oViDtBqQbhr1REmOz0W0i5UvRH79DUrLlpCmaZejDjDi8HZ77d3i8fLmvStiKTsmmXnl0TjwQdd4Usl6vvF5fzxLv5Ysny7Vo1iLrOFw3XcX1ygsMpSxWHmdJTGgSzwImollAiJglcUBmUZBEWZrlaUgiD2Cv5PO6eccroVqei6t8Iyp+2eRcW8Ebrdvni8Vut5uPouZNt16s19l8rwoPUM1arbxh8hzZnV3aMUvuE0IXf769dOxnslaa17nwwJjQyxdPLpY7WRfNDnay0JuVF8aBBxsh1xu0iSWJBwtD1KJDWpFruRUKr06W1mZdtZ4l47U5v3AzKI/meFDIrSxEt/LInAVJwHwSoqyU+kmKEptOiloPxHQQuhjZLbdS7BxfM7Mi8ZJumjLjhiV8+gQ+8Qk8MwN1g49DFLkj4vYIc4PvhsANoaMJ3PXAkQaOJnA0AfNgK5XMSrHyrnmp0IWyvu4wfMe10odSWH2GjZP59BnapORHJGYE88T5HPcJeWa+EX4Dc7A4N5JOpOquf6DQUWQYRV8v0n+UoWyU6X/OTD+8x8zoC0Kd3V9jJw0nMlGU/bPfOxLZl8y8LdGtHycwCr6JicvFCJXlgA5QG0M7ZI8WlTJ4YSmEqUl7CiFiI4oxy0OgKQ6xD4gGoCEEIS5pApEZY2AxHgTAIAFDRxlYcIQJ/gtiyyyCEJmZ3RgxCRQFBRAyoBZTASCSwOISMeozpAhDCPGSEU99w4JFEES4YgkEqKOBZEyRkOFFXKN4HxgFZi7TGPwIIsOPBgbqUWJUR5Y+RAQiahgiqhHRDs1InwAz1kSDu2Td9vrMRXlVjFPdtMdYIDXWo1PZc/XprCpeLEueiRIfiisTSYAtLw0irKDrptYwBtF3e+uOtxuZqyuhNd5S8IFv+SXXYv8aqdUo29LmTa1+6xr9U1P2Va0A8qYkR52bkk7m/lFrXLDJQTA9CCcH0WQef1ZugyfQK4Hym06N5Lwo3hiKU2lAT/5al4dXneA3bSPPzVgu7JuzFH1eykLy+g9MViPF+AWOT5ApV+MT5DN/VKTpiquDwgyG/V+ia/AsCubp9IMYO7gjGpA5mX5MYcq5AV+Qnl9KUNrh/jMrXGyPMeJ7cTR/3RloD6abxRv1qilPW9YBP/FW951tH1CJzpj1Y70uhU0SW2/xbc5vsmZ/5bKDOV7vDy2uiFMgW1vHAxYHPwyRYBgzN1oao9mRilgaYinImG6yOJ7T1LcUdszcaKkwf51qg6V0NJOSUYxUtqQR7ww4NvnNS9/XUl+OCy3zm8FS6ujf9VUmTilkCH6Wri0x/VYYkziNmB/FaZCkUXRLKP0vhNpUvJWEyxvR1aIcch5j3Te9chCewKEQuaxw6Q4Gl3ETzt9RAbdbiHUnBnpe2tbNOdSekmk639m2rF53TfWm3r7HXLmlwHIxarlUeSdbk5KQ4TtxI05ZV0jF8ZkppvcMSNH03Dwn6B5tXIPw7fWm6Wx3hlUHR4PNUlTYioG26Vf3lehkfnR0Z9s8VKof9KbzocAZL0OTfcByeCs4o8svlnh8T4ICL9sNN80hHdKQH0R35hrL7W1TjIIHsaXpKqGS+ErOEBAV32MFQX6Zwkqpsa/GWNSnvtppNlQabFJM1743XZmZHAyazORa7icORR/Jj5gT/MyYE1A0FvEb7FSVRbMecGsnv8iiEPVRW15j9tgYYB1rnbmAT4hwmX282qL5tmJMIj8E5k6IjB5HX3Pvy7GYpPLdYITUlYKQTeJBvjIe5LEWDphQJhx0iIaNykeM7H114d8EQfxduyvKlQhZtaXMpX6Am7P/qZvZnAY0TP0oZGGSxin7Bl7etx3yM6aMzsNf3HvTeT3dfwcr7Jnqpx18D7j4AdxPw1uhue5rW9hO7n9MeO6WpAfG5uHemvpjMS3VtmUafv6/+AdQSwcIvPHKrL0FAACbEAAAUEsBAhQAFAAIAAgAUz8jQNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACABTPyNAvPHKrL0FAACbEAAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAFQGAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<ggb_applet width="566" height="260"  version="4.0" ggbBase64="UEsDBBQACAAIAFM/I0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAFM/I0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vdbb9s2FH5Of8WBnrqttklR18JusW4oViDtBqQbhr1REmOz0W0i5UvRH79DUrLlpCmaZejDjDi8HZ77d3i8fLmvStiKTsmmXnl0TjwQdd4Usl6vvF5fzxLv5Ysny7Vo1iLrOFw3XcX1ygsMpSxWHmdJTGgSzwImollAiJglcUBmUZBEWZrlaUgiD2Cv5PO6eccroVqei6t8Iyp+2eRcW8Ebrdvni8Vut5uPouZNt16s19l8rwoPUM1arbxh8hzZnV3aMUvuE0IXf769dOxnslaa17nwwJjQyxdPLpY7WRfNDnay0JuVF8aBBxsh1xu0iSWJBwtD1KJDWpFruRUKr06W1mZdtZ4l47U5v3AzKI/meFDIrSxEt/LInAVJwHwSoqyU+kmKEptOiloPxHQQuhjZLbdS7BxfM7Mi8ZJumjLjhiV8+gQ+8Qk8MwN1g49DFLkj4vYIc4PvhsANoaMJ3PXAkQaOJnA0AfNgK5XMSrHyrnmp0IWyvu4wfMe10odSWH2GjZP59BnapORHJGYE88T5HPcJeWa+EX4Dc7A4N5JOpOquf6DQUWQYRV8v0n+UoWyU6X/OTD+8x8zoC0Kd3V9jJw0nMlGU/bPfOxLZl8y8LdGtHycwCr6JicvFCJXlgA5QG0M7ZI8WlTJ4YSmEqUl7CiFiI4oxy0OgKQ6xD4gGoCEEIS5pApEZY2AxHgTAIAFDRxlYcIQJ/gtiyyyCEJmZ3RgxCRQFBRAyoBZTASCSwOISMeozpAhDCPGSEU99w4JFEES4YgkEqKOBZEyRkOFFXKN4HxgFZi7TGPwIIsOPBgbqUWJUR5Y+RAQiahgiqhHRDs1InwAz1kSDu2Td9vrMRXlVjFPdtMdYIDXWo1PZc/XprCpeLEueiRIfiisTSYAtLw0irKDrptYwBtF3e+uOtxuZqyuhNd5S8IFv+SXXYv8aqdUo29LmTa1+6xr9U1P2Va0A8qYkR52bkk7m/lFrXLDJQTA9CCcH0WQef1ZugyfQK4Hym06N5Lwo3hiKU2lAT/5al4dXneA3bSPPzVgu7JuzFH1eykLy+g9MViPF+AWOT5ApV+MT5DN/VKTpiquDwgyG/V+ia/AsCubp9IMYO7gjGpA5mX5MYcq5AV+Qnl9KUNrh/jMrXGyPMeJ7cTR/3RloD6abxRv1qilPW9YBP/FW951tH1CJzpj1Y70uhU0SW2/xbc5vsmZ/5bKDOV7vDy2uiFMgW1vHAxYHPwyRYBgzN1oao9mRilgaYinImG6yOJ7T1LcUdszcaKkwf51qg6V0NJOSUYxUtqQR7ww4NvnNS9/XUl+OCy3zm8FS6ujf9VUmTilkCH6Wri0x/VYYkziNmB/FaZCkUXRLKP0vhNpUvJWEyxvR1aIcch5j3Te9chCewKEQuaxw6Q4Gl3ETzt9RAbdbiHUnBnpe2tbNOdSekmk639m2rF53TfWm3r7HXLmlwHIxarlUeSdbk5KQ4TtxI05ZV0jF8ZkppvcMSNH03Dwn6B5tXIPw7fWm6Wx3hlUHR4PNUlTYioG26Vf3lehkfnR0Z9s8VKof9KbzocAZL0OTfcByeCs4o8svlnh8T4ICL9sNN80hHdKQH0R35hrL7W1TjIIHsaXpKqGS+ErOEBAV32MFQX6Zwkqpsa/GWNSnvtppNlQabFJM1743XZmZHAyazORa7icORR/Jj5gT/MyYE1A0FvEb7FSVRbMecGsnv8iiEPVRW15j9tgYYB1rnbmAT4hwmX282qL5tmJMIj8E5k6IjB5HX3Pvy7GYpPLdYITUlYKQTeJBvjIe5LEWDphQJhx0iIaNykeM7H114d8EQfxduyvKlQhZtaXMpX6Am7P/qZvZnAY0TP0oZGGSxin7Bl7etx3yM6aMzsNf3HvTeT3dfwcr7Jnqpx18D7j4AdxPw1uhue5rW9hO7n9MeO6WpAfG5uHemvpjMS3VtmUafv6/+AdQSwcIvPHKrL0FAACbEAAAUEsBAhQAFAAIAAgAUz8jQNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACABTPyNAvPHKrL0FAACbEAAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAFQGAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
</center>
 
}}
 
}}
  

Version vom 4. Januar 2012, 11:14 Uhr

zurück zu Eigenschaften von Funktionen


  Aufgabe 1  Stift.gif

Betrachte die folgenden Funktionen im angegebenen Intervall. Die Funktionen sind durch Funktionsterm und Graph gegeben.

a) f:x \rightarrow x^2 für x \in R^+
Monotonie quadratfunktion.jpg
b) f:x \rightarrow sin(x) im Intervall [0;1]
Montonie sinusfunktion.jpg
c) f:x \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1 im Intervall [0;3]
Monotonie kubikfunktion.jpg</center

Was fällt dir auf? Was haben die drei Funktionsgraphen in den angegebenen Intervallen gemeinsam?


[Lösung anzeigen]

Dieser Begriff des Ansteigens eines Funktionsgraphen fassen wir genauer und benennen ihn.

Maehnrot.jpg
Merke:

Eine Funktion  f heißt streng monoton zunehmend im Intervall [a;b], wenn für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) < f(x_2)


  Aufgabe 2  Stift.gif

Betrachte die folgenden Funktionen in den angegebenen Intervallen Quadratfunktion in den angegebenen Intervallen

a) f:x \rightarrow x^2 für x \in R^-
Monotonie quadratfunktion2.jpg

b) f:x \rightarrow sin(x) im Intervall [2;3]
Montonie sinusfunktion.jpg
c) f:x \rightarrow -\frac{1}{9}x^3 + \frac{1}{2}x^2-1 im Intervall [-3;0]
Monotonie kubikfunktion2.jpg

Was stellst du nun fest? Was haben alle drei Graphen in den angegebenen Intervallen gemeinsam?


[Lösung anzeigen]


Auch diesen Begriff des Fallens eines Funktionsgraphen fassen wir - analog zu oben - genauer und benennen ihn.

Maehnrot.jpg
Merke:

Eine Funktion  f heißt streng monoton abnehmend im Intervall [a;b], wenn für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) > f(x_2)

Hier wird nochmals der Begriff Monotonie erklärt:


Man könnte diese Begriffe monoton zunehmend und monoton abnehmend auch für die Funktionsgraphen übernehmen, hier verwendet man allerdings monoton steigend und monoton fallend.

Maehnrot.jpg
Merke:

Eine Funktionsgraph  G_f heißt streng monoton steigend im Intervall [a;b], wenn die Funktion f dort streng monoton zunehmend ist,
d.h.für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) < f(x_2)

Eine Funktionsgraph  G_f heißt streng monoton fallend im Intervall [a;b], wenn die Funktion f dort streng monoton abnehmend ist,
d.h. für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) > f(x_2)


  Aufgabe 3  Stift.gif

Teste dich! Klicke im folgenden Quiz auf die richtigen Zuordnungen!


Monotonie f1.jpg

Monotonie f2.jpg

Monotonie f5.jpg

Monotonie f3.jpg

Monotonie f6.jpg

Monotonie f4.jpg

Monotonie f7.jpg

prüfen!

  Aufgabe 4  Stift.gif

Teste dich! Klicke im folgenden Quiz auf die richtigen Zuordnungen!

Du kannst als Hilfe GeoGebra öffnen, dir die Graphen der Funktionen zeichnen lassen und dann die Fragen beantworten.



f:x \rightarrow x^2 im Intervall [2;8]

f:x \rightarrow 2sin(x) + 3 im Intervall [\pi;\frac{3}{2}\pi]

f:x \rightarrow 2^x im Intervall [-1;4]

f:x \rightarrow log_2(x) im Intervall [-1;4]

f:x \rightarrow 4-x^2 im Intervall [-1;4]

f:x \rightarrow x^2+2x+1 im Intervall [2;8]

f:x \rightarrow x^n mit  n gerade im Intervall [-4;-1]

f:x \rightarrow x^n mit  n ungerade im Intervall [-3;9]

prüfen!

  Aufgabe 5  Stift.gif

Bestimme die Parameterwerte r, für die die Funktion  f: x \rightarrow rx^2 - 2 so, dass  f

  1. im Intervall [1;3] monoton zunehmend ist.
  2. im Intervall [1;3] monoton abnehmend ist.
  3. im Intervall [-2,5;-1] monoton zunehmend ist.
  4. im Intervall [-2,5;-1] monoton abnehmend ist.
  5. im Intervall [-1;1] monoton zunehmend ist.


[Lösung anzeigen]

  Aufgabe 5  Stift.gif

Bestimme die Parameterwerte r, für die die Funktion  f: x \rightarrow sin(rx) + 1 so, dass  f

  1. im Intervall [ \frac{\pi}{2};\pi] monoton zunehmend ist.
  2. im Intervall [ \frac{\pi}{2};\pi] monoton abnehmend ist.


[Lösung anzeigen]




zurück zu Eigenschaften von Funktionen