Wurzelfunktion allgemeine Wurzelfunktion: Unterschied zwischen den Versionen
Zeile 92: | Zeile 92: | ||
Aufgabe 18: {{Lösung versteckt| | Aufgabe 18: {{Lösung versteckt| | ||
1. Stelle mit dem Schieberegler die passende Wurzelfunktion ein. | 1. Stelle mit dem Schieberegler die passende Wurzelfunktion ein. | ||
− | <ggb_applet width=" | + | <ggb_applet width="706" height="322" version="4.0" ggbBase64="UEsDBBQACAAIANw+pUAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACADcPqVAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbL1XW2/bNhR+bn/FgZ42oLFJ6mYXdou1Q7EAaTcg3TDsYQAt0TYbiRREypeiP36HpGTLSRtk6DAjNkXx4/nOnczi9aGuYCdaI7VaRnRCIhCq0KVUm2XU2fXVLHr96vliI/RGrFoOa93W3C6jxCFliVvSPElyFl8l+by4SgqeXHGRl1drmjMeMy5mjEcAByNfKv2B18I0vBC3xVbU/EYX3HrirbXNy+l0v99PBqqJbjfTzWY1OZgyAlRTmWXUP7xEcReb9rGHM0Lo9M/3N0H8lVTGclWICJwJnXz1/NliL1Wp97CXpd0uo5wmEWyF3GydTSnaNHWgBh3SiMLKnTC4dTT1Ntu6iTyMK7f+LDxBdTInglLuZCnaZUQmbEYoZSRJZjSfs5xFoFsplO2xtOecDtIWOyn2Qax78oyopdW6WnEnEb58AUYYgRduoGFgOGRZWCLhHYnDwMKQhCENmCRsTwI0CZgkYJI4gp00clWJZbTmlUEPSrVuMXqnubHHSnh9+hdn6+kLtMnIzwiOCbo0uBzfE/LCfTP8JqT39chIOmK1bfcvSQfKnGRPp2TfZWg8cLKvmcnSb5iZPUIa7H6KnTQdcSKV//PfB4zxY2beZwzz7yPMkv/FxMV0KJVFXx1gtg7bZ48VtXH1Es8hnbu0p5BibWQ5ZnkKdI5DzgCrAWgKSYpTOoPMjTnEOS4kEMMMHI7G4IsjneFPknthGaQozL3NsSaBIlECaQzU11QCWEng6xJrlMWISFNIcZOjp8yJiDNIMpzFM0hQR1eSOUVgjBtxjvQMYgqx20xzYBlkTh5NXKlnM6c6imSQEcioE4hVjRUdqhnxM4idNVnvLqmazl64qKjL4dHq5hQLRGM/One90J8umuKzRcVXosJz4tZFEmDHK1cRnmitlYUhiCy827S82crC3AprcZeBT3zHb7gVh3eINgO3xxZamd9abd/qqquVASh0RU4664qOntlJa5zEo4VkvJCOFrLRc/5VXo0r0BmB/Lo1A5yX5bVDnFsDevJXVR3ftILfNVpemrGY+iNnIbqikqXk6g9MVsfi/AKnE8i1q+EEYvNkUES35e3RYAbD4S/Ratc2YnfmHsOMUTIh4w9KMQV39ZbMJ/PxZ4ab+qX03qY+NGJ3Cgo/iJO9m1aW4+dr80ZX5cl6b/Bb3tiu9bcF7IatM+MntamETwrfX/EoLu5W+nAbsiEOsj4eG5yRwL/aeEcDNgOWpgjox1UYPcYpdkIRjyEeQYb0kuVpnc6ZR/hxFUaPwnwNqvWG0sFKSgYaaXwLI9FFofhkX0aHCDol7U2YYdHI4q43lYYNH7p6Jc454wA/y3ANCferSxr6VZrjf0KzmN5LvcWdaJWo+kzHgHe6M6FwR0VQikLWOA0LveO4C+rvqFN4W4pNK3o8r/x9LbjVr5JxEj947UW9a3V9rXYfMWPuKbCYDlouTNHKxuUlrPB0uBPn3Cul4Xi4lON9rjTRG4U7RNAh1nkLi7azW936Kxn2GhxdRVaixgsYWJ+EqqtFK4uT85W/26FSXa93PETNOR706hM2wXsB8xOPweVvpCnwqtlydyOkfTLyo2gvXOOlvddlT9zjTOWuklDLcDbW/ODzFfjKYH+0eJnGWKjzZTpo1vcXvIm4tnFwdzHfP0IXiGAtDyOHoo/kZ8wJfmHMuVwstu47vJ8aX9O2r17/8IssS6FO2nKF2eNjgN2rCQnbCBFy/bSxQeN91xjFvQ+LD2Vdc1WC8heGd53yQY3OZxjH0+Dw9w8UpqB+RE/Q4GA8C67VWmKaHvtodHaArwNJL/pBFqwHkiGk6+jxkI8q5mHMaRo/iDp5YtTJI76PH/P92IPTcTX4s6j/t+rVP1BLBwg+GSn0dgUAAPMNAABQSwECFAAUAAgACADcPqVARczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIANw+pUA+GSn0dgUAAPMNAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAADgYAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br> |
<br>2. (0;0 und (1;1) | <br>2. (0;0 und (1;1) |
Version vom 5. Mai 2012, 06:55 Uhr
Startseite --- Die Wurzelfunktion - Übungen - Anwendungen - Weitere Eigenschaften --- Die allgemeine Wurzelfunktion - Übungen und Anwendungen --- Die Wurzelfunktion als Umkehrfunktion
Bei den folgenden Aufgaben bearbeitest du den Zusammenhang zwischen dem Volumen eines Würfels und seiner Seitenlänge.
Ein Würfel mit der Seitenlänge hat das Volumen .
Ist die Seitenlänge , dann ist also das Volumen .
Umgekehrt ist dann für einen Würfel mit Volumen die zugehörige Seitenlänge .
Im folgenden Applet wird der Seitenlänge eines Würfels das Volumen zugeordnet.
a) Welches Volumen ergibt sich für = 1; 1,5; 2; 2,5? Halte deine Ergebnisse in Form einer Tabelle fest! |
Wie kannst du die Seitenlänge bei gegebenem Volumen berechnen?
Fehler beim Parsen(Lexikalischer Fehler): a = \sqrt[3]{V}\
Die Gleichung hat für jede natürliche Zahl n und jede nicht negative reelle Zahl a als Lösung Fehler beim Parsen(Lexikalischer Fehler): \sqrt[n]{a}\ heißt die n-te Wurzel aus a. |
a) Setze in deine Formel verschiedene Werte für das Würfelvolumen V ein und berechne welche Werte
sich für die Seitenlänge a ergeben! Trage die Ergebnisse in eine Wertetabelle ein!
|
Allgemein ist für jede natürliche Zahl die allgemeine Wurzelfunktion -ten Grades oder -te Wurzelfunktion definiert mit
mit und . |
Gib für die Würfelaufgabe die zugehörige Funktion mit Definitionsmenge an! |
|
Aufgabe 15:
a) 1, 3,375; 8; 15,625
b)
c) 27; 125; 1000; 3375
c) 1,2; 1,4; 1,5; 1,6; 1,7; 2,1; 2,5; 2,6
Aufgabe 16:
Aufgabe 17:
Aufgabe 18:
1. Stelle mit dem Schieberegler die passende Wurzelfunktion ein.
2. (0;0 und (1;1)
Du hast nun die allgemeine Wurzelfunktion kennengelernt. Es geht weiter mit Übungen und Anwendungen.