Wurzelfunktion allgemeine Wurzelfunktion: Unterschied zwischen den Versionen
(28 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | [[ | + | [[Wurzelfunktion_Startseite|Startseite]] --- [[Wurzelfunktion_Einführung|Die Wurzelfunktion]] - [[Wurzelfunktion_Übungen_1|Übungen]] - [[Wurzelfunktion_Anwendungen|Anwendungen]] - [[Wurzelfunktionen_Eigenschaften|Weitere Eigenschaften]] --- [[Wurzelfunktion_allgemeine_Wurzelfunktion|Die allgemeine Wurzelfunktion]] - [[Wurzelfunktion_Übungen_2|Übungen und Anwendungen]] --- [[Wurzelfunktion_Umkehrfunktion|Die Wurzelfunktion als Umkehrfunktion]] |
+ | __NOCACHE__ | ||
+ | ---- | ||
+ | [[Datei:Wuerfel.jpg|200px|right]] | ||
+ | Bei den folgenden Aufgaben bearbeitest du den Zusammenhang zwischen dem Volumen eines Würfels und seiner Seitenlänge. | ||
+ | <br><br> | ||
+ | Ein Würfel mit der Seitenlänge <math>a</math> hat das Volumen <math> V = a^3</math>. | ||
+ | Ist die Seitenlänge <math>a = 3 cm</math>, dann ist also das Volumen <math> V = 27 cm^3</math>. | ||
+ | <br>Umgekehrt ist dann für einen Würfel mit Volumen <math> V= 27 cm^3</math> die zugehörige Seitenlänge <math>a= 3 cm</math>.<br> | ||
− | |||
− | |||
− | |||
− | |||
− | + | {{Arbeiten|NUMMER=18| ARBEIT= | |
− | + | Im folgenden Applet wird der Seitenlänge <math>a</math> eines Würfels das Volumen <math>V</math> zugeordnet. <br>Der Punkt P hat die Koordinaten (<math>a| V</math>). Mit dem Schieberegler kannst du verschiedene Werte für <math>a</math> einstellen. | |
− | < | + | <br> |
+ | <center> | ||
+ | <ggb_applet width="522" height="647" version="4.0" ggbBase64="UEsDBBQACAAIAHKjnkAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAByo55AAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1a72/bNhP+3P0VhD5t7+pY1C/bhdOhSZqmQLYWSDcM+zCAkmiZtURpIu04xf74HUlJlq0mi5J6r5OgKUXyyOM9z93x5Hj60zpL0YqWguX82MJHtoUoj/KY8eTYWsrZYGz99Pq7aULzhIYlQbO8zIg8tjwlyWJYQhwSeDEdxDGJBl7oR4NJEHiDmR2MJgST2SSOLITWgr3i+S8ko6IgEb2K5jQjl3lEpFY8l7J4NRxeX18f1aqO8jIZJkl4tBaxheCYXBxb1cMr2G5r0bWrxR3bxsPff7402w8YF5LwiFpImbBkr797Mb1mPM6v0TWL5fzY8l0wY05ZMgebRiPfQkMlVAAgBY0kW1EBS1tdbbPMCkuLEa7mX5gnlDbmWChmKxbT8tiyjxzfGbs2Ho8BEMfzXQvlJaNcVrK40jmsd5uuGL0226onrdGzkMzzNCRqR/T338ixHRu9VA02jQNNEJgp24zZrmkc03im8Y2MZ5Z7RtQzMp6R8eCMKyZYmNJja0ZSAQgyPiuBvaYv5E1K9XmqgY31+CXYJNgXEHZtwNdADuO2/VL9BvDrqYnhtpG4pVWWy55Ka5W+49xfpfMoQ91aJ3a9rk7Hv8XM4A6lxu772In9FrSgSv/Tvx2N7l1m7mo0/ccpDLz/xMTpsA6VaRUdSMyVbOU9kmZCxYs7Qf5EuT1GPsRGMAIv9xGeQDNyEEQDwj7yfOjiMQpUO0LuCCY85KIxUnLYRTo4/DH85430ZgHyYTM1OoKYRBgUech3EdYx5SGIJKTjEmLUcUHC95EPi5R67Kgt3AB5AfTcMfLgjCokRxgEXVgIfVDvIBcjVy3GI+QEKFD7YU+FejBWR4ctHRTYKMBqQ4hqiGgTzSA/Rq6yJqjgYrxYyi2IoiyuH2VeNFyANOSjTdYz+WkrKb6YpiSkKdwTV4pJhFYkVRGhFc1yLlFNomPGkpIUcxaJKyolrBLoM1mRSyLp+hykRa1by0Y5Fx/LXJ7m6TLjAqEoT+3mzHmKW89Oc2rouK0Jrz3htyaC1vPoq3pzmEFLQUF/XopanMTxeyWxSQ2A5Aee3pyUlCyKnG2bMR3qK2dKl1HKYkb4b+CsSovCBTU3kEpX9Q0U4El9kLyMr24EeDBa/0HLHKCdHLntn7GFbsyMP3aO7NbPBE4WERV6rru9ZgRrbpnyjGK6avgha9qYnpQqrCuzVee9OMnTzZA2/pQUclnqygEyY6lMesOTlGoH0bkWruVoEebrqyprmr0+3RTQs80BwkSDjiAxOD7cx0nVhqbVMupkjZStZWwtYdeuxuJmHk8cLaHb0LRaCnzXHK2yFNdmYrtWw4ROZ7a1FTTa8dUlv+RMXtYdyaJFZSk28r8ss5Bu3EcJnDFTkZhSa1sL3p+W6XDHCacLWnKaVj4PfC/zpTAh3AqHmEYsg+5WbBNF6a9wJjMa06SklTxJdeVmQNWzdtudO8N6q/Myz97z1Sfwl50DTIf1KaciKlmh3BKFcE8s6MbzYiYIXDNxe50KUkAjUtcJACIVWhC+SznPS12cQdaBVsVmSjMoxZDULsiXGS1Z1GBPdJUHh1pW53Zq0hTwKA8/Qzrc4Ut3tAxMd1wZ207lqIikxZyo+hBX7khuaLkFj97x5zyulFdyIlWFJcoY19tkZK3DjYQCkqWEyhro4JvK2hyuSjZQlqi6HVY4wUQ93cBaXz3M2LoFKuDEvoBfkC2DNgEjIZEvoFoVOqplFb/64YLFMeXNaQkHD9I8QC4rjLkIrhFqHL5ZWoD5OnO02K/I6dCkk00D+BvrbkJa/txmpJ02NDsNH/Y9+ahGNXJmZAOVdnihgLYrmHX7pRX32gqVCLeiy4zuRMoWFOuiBOAVopWBJ/DKtgZovycvkf2DtQ3S8F/QO3kYeqrAS0wTmuah8G2QcvaO1GkLKdIXqdPDQ8rZG1JnNVL2A5A6Oxyk7G+MVJRnGeEx4vpN5oomatza1NbEVgkJEawiy1i4lPVEaHar9uiAKKrdapjCh8F411XzzXDcbPWAO4H+xc0SYQoZlhUpi5hsAEvVVfCeSyhrqL7Eu6XJgtJC1Y0f+KeScKE+ltrOwX1ZOzGsnXZYi/qxFh0Qa4PdlOo9O9pODW1nHdrifrTFB0RbHWwD59nSdmZoe9OhjfajjR4QbbvB9rRyZLcGeNtUS+h/yD7yoRIwD33rgbf/5wp9QxGuKMJ7K5zON6D9iB4L3PnhFFLu3pF7dwtyPz4UvXeHh567N/QuvhKsD0bu4nCQw98YuR6l4Hnncpr1u5xmB3Q5DXZTn/Okbqf70HZuaHvXoS3pR1tySLTtFhXBs6PtnaHtokPbvB9t8wOirVPBPz/aLm578WL9aGMHRFudIwfPN0me3pYkP/ej7fMB0da5257Wm9d9aHt7W0my6Efb4oBo2/1McXDPaMP+k+Ot+zlH2o+39IB462TJe4bbE+StW5Rk/XjLDoi3Ti35xOKt+9L7sf33vD+/d3/o+6L78V/o+fof87/Bey6+7cPD8V7ecz+Ucp4nOSfpJVC94+sfja/fvFkz0fF3fre/K89p0OKP/5zvIY7u3Fp91wlqvDdHfxzk669CXvSAvPgvIf8wmwkqFcIj46v35KOpz/afeNp8DNtfA9Jfx6u+Wf76H1BLBwiqg3SPvAcAAPYuAABQSwECFAAUAAgACAByo55ARczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAHKjnkCqg3SPvAcAAPYuAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAVAgAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /></center><br> | ||
+ | a) Welches Volumen <math>V</math> ergibt sich für <math>a</math> = 1; 1,5; 2; 2,5? Halte deine Ergebnisse in Form einer Tabelle fest!<br> | ||
+ | b) Gib eine Funktionsgleichung an, die der Seitenlänge <math>a</math> das Volumen <math>V</math> eines Würfels zuordnet! <br> | ||
+ | c) Welchen Wert nimmt <math>V</math> für <math>a</math> = 3; 5; 10; 15 an? Verwende dazu deine Funktionsgleichung!<br> | ||
+ | d) Stelle mit dem Schieberegler für das Volumen <math>V</math> die Werte ein 1,728; 2,744; 3,375; 4,096; 4,913; 9,261; 15,625; 17,576. Lies die dazugehörigen Seitenlängen <math>a</math> im Applet ab und ergänze deine Tabelle! | ||
+ | }} | ||
+ | Wie kannst du die Seitenlänge <math>a</math> bei gegebenem Volumen <math>V</math> berechnen? | ||
+ | <br> | ||
+ | {{Lösung versteckt| | ||
+ | <math> a = V^{\frac{1}{3}}</math> | ||
+ | <math> a = \sqrt[3]{V}</math><br> | ||
+ | }} | ||
− | {{ | + | {{Merke| |
− | Die Gleichung <math> a = x^n</math> hat für jede natürliche Zahl n und jede nicht negative reelle Zahl | + | Die Gleichung <math> a = x^n</math> hat für jede natürliche Zahl n und jede nicht negative reelle Zahl a als Lösung<br> |
− | <center> <math> x = a^{\frac{1}{n}}</math> oder <math> x = \sqrt[n]{a} | + | <center> <math> x = a^{\frac{1}{n}}</math> oder <math> x = \sqrt[n]{a}</math></center> |
− | <math> \sqrt[n]{a} | + | <math> \sqrt[n]{a}</math> heißt die''' n-te Wurzel aus a'''. |
}} | }} | ||
− | {{ | + | {{Arbeiten|NUMMER=19| ARBEIT= |
− | sich für die Seitenlänge a ergeben | + | a) Setze in deine Formel verschiedene Werte für das Würfelvolumen V ein und berechne welche Werte |
+ | sich für die Seitenlänge a ergeben! Trage die Ergebnisse in eine Wertetabelle ein! | ||
+ | <br>b) Stelle deine Wertepaare im Koordinatensystem dar (<math>V</math> entspricht der x-Achse, <math>a</math> entspricht der y-Achse)!}} | ||
− | |||
− | {{ | + | {{Merke| |
− | + | Allgemein ist für jede natürliche Zahl <math>n</math> die allgemeine Wurzelfunktion <math>n</math>-ten Grades oder <math>n</math>-te Wurzelfunktion definiert mit | |
− | + | <br> | |
− | + | <math> f: x \rightarrow \sqrt[n]{x}</math> mit <math> x \in R^+_0</math> und <math>n \in N</math>. | |
− | + | }} | |
− | + | ||
+ | {{Arbeiten|NUMMER=20| | ||
+ | ARBEIT= Gib für die Würfelaufgabe die zugehörige Funktion mit Definitionsmenge an!}} | ||
− | |||
− | |||
− | <math> f: x \rightarrow \sqrt[n]{x} | + | {{Arbeiten|NUMMER=21| |
+ | ARBEIT= | ||
+ | # Zeichne für n = 1, 2, 3, 4, 5, 6 die Graphen der n-ten Wurzelfunktion <math> f: x \rightarrow \sqrt[n]{x}</math> | ||
+ | # Welche Punkte haben alle Graphen gemeinsam? | ||
}} | }} | ||
− | |||
− | |||
− | {{Lösung versteckt| | + | Aufgabe 18: {{Lösung versteckt| |
− | <math> | + | a) 1, 3,375; 8; 15,625<br> |
+ | b) <math>V = a^3</math><br> | ||
+ | c) 27; 125; 1000; 3375<br> | ||
+ | c) 1,2; 1,4; 1,5; 1,6; 1,7; 2,1; 2,5; 2,6 | ||
}} | }} | ||
+ | Aufgabe 19: {{Lösung versteckt| | ||
+ | Dein Ergebnis kann so aussehen.<br> | ||
+ | a) [[Datei:Wuerfel_V-a-Tabelle.jpg]]<br> | ||
+ | b) [[Datei:Wuerfel_V-a-graph.jpg]]<br> | ||
+ | Verbindet man die Punkte, dann erhält man diesen Graphen: | ||
+ | [[Datei:Wuerfel_V-a-graph_2.jpg]] }} | ||
+ | Aufgabe 20: {{Lösung versteckt| | ||
+ | <math>f:V \rightarrow \sqrt[3]{V}</math> mit <math>D = R^+_0</math>}} | ||
− | + | Aufgabe 21: {{Lösung versteckt| | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | {{Lösung versteckt| | + | |
1. Stelle mit dem Schieberegler die passende Wurzelfunktion ein. | 1. Stelle mit dem Schieberegler die passende Wurzelfunktion ein. | ||
− | <ggb_applet width=" | + | <ggb_applet width="706" height="322" version="4.0" ggbBase64="UEsDBBQACAAIANw+pUAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACADcPqVAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbL1XW2/bNhR+bn/FgZ42oLFJ6mYXdou1Q7EAaTcg3TDsYQAt0TYbiRREypeiP36HpGTLSRtk6DAjNkXx4/nOnczi9aGuYCdaI7VaRnRCIhCq0KVUm2XU2fXVLHr96vliI/RGrFoOa93W3C6jxCFliVvSPElyFl8l+by4SgqeXHGRl1drmjMeMy5mjEcAByNfKv2B18I0vBC3xVbU/EYX3HrirbXNy+l0v99PBqqJbjfTzWY1OZgyAlRTmWXUP7xEcReb9rGHM0Lo9M/3N0H8lVTGclWICJwJnXz1/NliL1Wp97CXpd0uo5wmEWyF3GydTSnaNHWgBh3SiMLKnTC4dTT1Ntu6iTyMK7f+LDxBdTInglLuZCnaZUQmbEYoZSRJZjSfs5xFoFsplO2xtOecDtIWOyn2Qax78oyopdW6WnEnEb58AUYYgRduoGFgOGRZWCLhHYnDwMKQhCENmCRsTwI0CZgkYJI4gp00clWJZbTmlUEPSrVuMXqnubHHSnh9+hdn6+kLtMnIzwiOCbo0uBzfE/LCfTP8JqT39chIOmK1bfcvSQfKnGRPp2TfZWg8cLKvmcnSb5iZPUIa7H6KnTQdcSKV//PfB4zxY2beZwzz7yPMkv/FxMV0KJVFXx1gtg7bZ48VtXH1Es8hnbu0p5BibWQ5ZnkKdI5DzgCrAWgKSYpTOoPMjTnEOS4kEMMMHI7G4IsjneFPknthGaQozL3NsSaBIlECaQzU11QCWEng6xJrlMWISFNIcZOjp8yJiDNIMpzFM0hQR1eSOUVgjBtxjvQMYgqx20xzYBlkTh5NXKlnM6c6imSQEcioE4hVjRUdqhnxM4idNVnvLqmazl64qKjL4dHq5hQLRGM/One90J8umuKzRcVXosJz4tZFEmDHK1cRnmitlYUhiCy827S82crC3AprcZeBT3zHb7gVh3eINgO3xxZamd9abd/qqquVASh0RU4664qOntlJa5zEo4VkvJCOFrLRc/5VXo0r0BmB/Lo1A5yX5bVDnFsDevJXVR3ftILfNVpemrGY+iNnIbqikqXk6g9MVsfi/AKnE8i1q+EEYvNkUES35e3RYAbD4S/Ratc2YnfmHsOMUTIh4w9KMQV39ZbMJ/PxZ4ab+qX03qY+NGJ3Cgo/iJO9m1aW4+dr80ZX5cl6b/Bb3tiu9bcF7IatM+MntamETwrfX/EoLu5W+nAbsiEOsj4eG5yRwL/aeEcDNgOWpgjox1UYPcYpdkIRjyEeQYb0kuVpnc6ZR/hxFUaPwnwNqvWG0sFKSgYaaXwLI9FFofhkX0aHCDol7U2YYdHI4q43lYYNH7p6Jc454wA/y3ANCferSxr6VZrjf0KzmN5LvcWdaJWo+kzHgHe6M6FwR0VQikLWOA0LveO4C+rvqFN4W4pNK3o8r/x9LbjVr5JxEj947UW9a3V9rXYfMWPuKbCYDlouTNHKxuUlrPB0uBPn3Cul4Xi4lON9rjTRG4U7RNAh1nkLi7azW936Kxn2GhxdRVaixgsYWJ+EqqtFK4uT85W/26FSXa93PETNOR706hM2wXsB8xOPweVvpCnwqtlydyOkfTLyo2gvXOOlvddlT9zjTOWuklDLcDbW/ODzFfjKYH+0eJnGWKjzZTpo1vcXvIm4tnFwdzHfP0IXiGAtDyOHoo/kZ8wJfmHMuVwstu47vJ8aX9O2r17/8IssS6FO2nKF2eNjgN2rCQnbCBFy/bSxQeN91xjFvQ+LD2Vdc1WC8heGd53yQY3OZxjH0+Dw9w8UpqB+RE/Q4GA8C67VWmKaHvtodHaArwNJL/pBFqwHkiGk6+jxkI8q5mHMaRo/iDp5YtTJI76PH/P92IPTcTX4s6j/t+rVP1BLBwg+GSn0dgUAAPMNAABQSwECFAAUAAgACADcPqVARczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIANw+pUA+GSn0dgUAAPMNAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAADgYAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br> |
− | + | ||
− | + | ||
− | + | <br>2. (0;0 und (1;1) | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
}} | }} | ||
+ | ---- | ||
− | + | Du hast nun die allgemeine Wurzelfunktion kennengelernt. Es geht weiter mit [[Wurzelfunktion_Übungen_2|Übungen und Anwendungen]]. | |
− | + | ||
− | + | ||
− | + |
Aktuelle Version vom 16. April 2017, 09:31 Uhr
Startseite --- Die Wurzelfunktion - Übungen - Anwendungen - Weitere Eigenschaften --- Die allgemeine Wurzelfunktion - Übungen und Anwendungen --- Die Wurzelfunktion als Umkehrfunktion
Bei den folgenden Aufgaben bearbeitest du den Zusammenhang zwischen dem Volumen eines Würfels und seiner Seitenlänge.
Ein Würfel mit der Seitenlänge hat das Volumen .
Ist die Seitenlänge , dann ist also das Volumen .
Umgekehrt ist dann für einen Würfel mit Volumen die zugehörige Seitenlänge .
Im folgenden Applet wird der Seitenlänge eines Würfels das Volumen zugeordnet.
a) Welches Volumen ergibt sich für = 1; 1,5; 2; 2,5? Halte deine Ergebnisse in Form einer Tabelle fest! |
Wie kannst du die Seitenlänge bei gegebenem Volumen berechnen?
Die Gleichung hat für jede natürliche Zahl n und jede nicht negative reelle Zahl a als Lösung heißt die n-te Wurzel aus a. |
a) Setze in deine Formel verschiedene Werte für das Würfelvolumen V ein und berechne welche Werte
sich für die Seitenlänge a ergeben! Trage die Ergebnisse in eine Wertetabelle ein!
|
Allgemein ist für jede natürliche Zahl die allgemeine Wurzelfunktion -ten Grades oder -te Wurzelfunktion definiert mit
|
Gib für die Würfelaufgabe die zugehörige Funktion mit Definitionsmenge an! |
|
Aufgabe 18:
a) 1, 3,375; 8; 15,625
b)
c) 27; 125; 1000; 3375
c) 1,2; 1,4; 1,5; 1,6; 1,7; 2,1; 2,5; 2,6
Aufgabe 19:
Aufgabe 20:
Aufgabe 21:
1. Stelle mit dem Schieberegler die passende Wurzelfunktion ein.
2. (0;0 und (1;1)
Du hast nun die allgemeine Wurzelfunktion kennengelernt. Es geht weiter mit Übungen und Anwendungen.