Wurzelfunktionen Eigenschaften: Unterschied zwischen den Versionen
Zeile 40: | Zeile 40: | ||
Verwende die beiden funktionalen Abhängigkeiten aus Aufgabe 16 und | Verwende die beiden funktionalen Abhängigkeiten aus Aufgabe 16 und | ||
− | a) gib die mittlere Änderungsrate für beide Funktionen im Intervall | + | a) gib die mittlere Änderungsrate für beide Funktionen im Intervall [2;3] an! |
b) halte schriftlich fest, welche Bedeutung die mittlere Änderungsrate in diesem Zusammenhang hat! | b) halte schriftlich fest, welche Bedeutung die mittlere Änderungsrate in diesem Zusammenhang hat! |
Version vom 28. Juli 2012, 10:40 Uhr
Startseite --- Die Wurzelfunktion - Übungen - Anwendungen - Weitere Eigenschaften --- Die allgemeine Wurzelfunktion - Übungen und Anwendungen --- Die Wurzelfunktion als Umkehrfunktion
Der Differenzenquotient =
ist der Quotient der Änderung der Funktionswerte y durch die
Änderung der Abszissenwerte x.
- Er gibt die Steigung einer Sekante durch die Punkte
und
.
- Er ermöglicht die Berechnung des Steigungswinkels.
- Er gibt die mittlere Änderungsrate an.
Zeichne den Graphen der Funktionen Gib den Steigungswinkel der Sekante an!
|
Gib für die folgenden zwei funktionalen Abhängigkeiten a) Dem Oberflächeninhalt
|
Verwende die beiden funktionalen Abhängigkeiten aus Aufgabe 16 und a) gib die mittlere Änderungsrate für beide Funktionen im Intervall [2;3] an! b) halte schriftlich fest, welche Bedeutung die mittlere Änderungsrate in diesem Zusammenhang hat! Löse die Aufgabe mithilfe von GeoGebra oder einer Tabellenkalkulation! |
Aufgabe 15 [Lösung anzeigen]
Aufgabe 16 [Lösung anzeigen]
Aufgabe 17 [Lösung anzeigen]
Zurück zu Wurzelfunktion oder weiter mit Übungen oder mit Anwendungen.