Quadratische Funktionen 2 - Allgemeine quadratische Funktion: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „Du hast bisher kennengelernt, dass du eine quadratische Funktion in der Form Quadratische_Funktionen_2_-_quadratische_Ergänzung schreiben kannst und aus dieser D…“) |
K |
||
Zeile 8: | Zeile 8: | ||
Umgekehrt kann man den Term <math> f(x) = ax^2 + bx +c</math> mittels [[Quadratische_Funktionen_2_-_quadratische_Ergänzung|quadratischer Ergänzung]] in den Term <math>a(x - d)^2 + e </math> überführen. | Umgekehrt kann man den Term <math> f(x) = ax^2 + bx +c</math> mittels [[Quadratische_Funktionen_2_-_quadratische_Ergänzung|quadratischer Ergänzung]] in den Term <math>a(x - d)^2 + e </math> überführen. | ||
+ | |||
+ | Du kannst hier nun den '''Einfluss der Parameter a, b und c''' in der Funktion <math> f</math> mit <math> f(x) = ax^2 + bx + c</math> untersuchen. | ||
+ | |||
+ | {| | ||
+ | | | ||
+ | <span style="background-color:yellow;">Hefteintrag:</span> Am besten verwendest du hierfür dein Heft im Querformat, damit du eine Tabelle mit drei Spalten für den Einfluss von <math>\ a,b</math> und <math>\ c</math> anlegen kannst. Formuliere eine Überschrift und übernimm alle mit gelb gekennzeichneten Texte. Natürlich darfst du dir aber auch noch zusätzlich Notizen machen. | ||
+ | |} | ||
+ | |||
+ | ---- | ||
+ | <center> | ||
+ | {| | ||
+ | | | ||
+ | {| class="wikitable" | ||
+ | |- class="hintergrundfarbe5" | ||
+ | ! style="background-color:#ffff00;" | Einfluss von a !! style="background-color:#ffff00;" |Einfluss von b !! style="background-color:#ffff00;" |Einfluss von c | ||
+ | |- | ||
+ | | | ||
+ | Untersuche [[Quadratische_Funktionen_2_Einfluss_von_a|hier]] den Einfluss von <math> \ a </math> | ||
+ | |||
+ | : | ||
+ | |||
+ | auf die Graphen der Funktionen | ||
+ | |||
+ | :<math> x \rightarrow \ a x^2 </math>. | ||
+ | || | ||
+ | Untersuche [[Quadratische_Funktionen_2_Einfluss_von_b|hier]] den Einfluss von <math> \ b </math> | ||
+ | |||
+ | : | ||
+ | |||
+ | auf die Graphen der Funktionen | ||
+ | |||
+ | :<math> x \rightarrow \ x^2 + bx </math>. | ||
+ | || | ||
+ | Untersuche [[Quadratische_Funktionen_2_Einfluss_von_c|hier]] den Einfluss von <math> \ c </math> | ||
+ | |||
+ | : | ||
+ | |||
+ | auf die Graphen der Funktionen | ||
+ | |||
+ | :<math> x \rightarrow \ x^2 + c </math>. | ||
+ | |} | ||
+ | |} | ||
+ | </center> | ||
+ | |||
+ | |||
+ | {| | ||
+ | | | ||
+ | Du hast eine Menge über den Einfluss der einzelnen Parameter auf das Aussehen der Graphen herausgefunden. Natürlich können aber die Parameter nicht nur einzeln variiert werden, sondern auch mehrere oder alle gleichzeitig. | ||
+ | |||
+ | {{Merksatz|MERK= | ||
+ | Die <span style="background-color:yellow;">allgemeine quadratische Funktion</span> lautet | ||
+ | |||
+ | :<span style="background-color:yellow;"> '''<math> x\rightarrow ax^2 + bx + c </math>''' </span>. | ||
+ | |||
+ | Dabei sind <math>\ a,b,c,d </math> Parameter, die auf das Aussehen des Funktionsgraphen Einfluss nehmen. Es gilt <span style="background-color:yellow;"> '''<math>\ a,b,c \in \R </math>''' </span> und <span style="background-color:yellow;"> '''<math>a,b\neq 0</math>''' </span>.}} | ||
+ | |} | ||
+ | |||
+ | Vredeutliche dir mit diesem Applet noch einmal die Wirkung der einzelnen Parameter: | ||
+ | |||
+ | <center> <ggb_applet height="500" width="700" | ||
+ | filename="Qf-abc.ggb" /> | ||
+ | </center> | ||
+ | |||
+ | |||
+ | |||
+ | ---- |
Version vom 17. Juli 2011, 16:22 Uhr
Du hast bisher kennengelernt, dass du eine quadratische Funktion in der Form Quadratische_Funktionen_2_-_quadratische_Ergänzung schreiben kannst und aus dieser Darstellung erhältst du die Scheitelkoordinaten S(d;e).
Oft werden quadratische Funktionen in der der Form geschrieben. Auf dieser Seite soll nun der Zusammenhang zwischen beiden Darstellungen gewonnen werden.
Du kennst die binomische Formeln. Damit kannst du in überführen. Damit ist dann
Vergleicht man diesen Term mit , dann ist b = 2ad und .
Umgekehrt kann man den Term mittels quadratischer Ergänzung in den Term überführen.
Du kannst hier nun den Einfluss der Parameter a, b und c in der Funktion mit untersuchen.
Hefteintrag: Am besten verwendest du hierfür dein Heft im Querformat, damit du eine Tabelle mit drei Spalten für den Einfluss von und anlegen kannst. Formuliere eine Überschrift und übernimm alle mit gelb gekennzeichneten Texte. Natürlich darfst du dir aber auch noch zusätzlich Notizen machen. |
|
Du hast eine Menge über den Einfluss der einzelnen Parameter auf das Aussehen der Graphen herausgefunden. Natürlich können aber die Parameter nicht nur einzeln variiert werden, sondern auch mehrere oder alle gleichzeitig.
|
Vredeutliche dir mit diesem Applet noch einmal die Wirkung der einzelnen Parameter: