Quadratische Funktionen 2 - Köln-Arena
Die Köln-Arena wird von einem parabelförmigen Bogen überspannt. Parabeln kennst du als Graphen quadratischer Funktionen. Hier ist die Parabel allerdings nach unten geöffnet. Finde mit Hilfe des Applets die Parameter a und c zur quadratischen Funktion
.

|
Der Koeffizient von |
Liegt das Bild nicht so im Koordinatensystem, dass der Scheitel auf der y-Achse ist, so kann man trotzdem eine Parabel über den Bogen legen. Es ist ja immer noch das gleiche Bild. Die quadratische Funktion hat dann allerdings die Funktionsgleichung
mit den Parameter a, b, c.
Finde mit Hilfe des Applets die Werte für a, b und c.

Durch quadratische Ergänzung kannst du den Funktionsterm
auf die Form
bringen. Im folgenden Applet ist die quadratische Funktion in dieser Form gegeben. Finde die Parameter a, d, e.

|
- b = 0
- d = 0
- a < 0
- a > 0
Als nächstes wollen wir untersuchen, welchen Einfluss die Parameter a, d und e in der Funktionsgleichung auf den Graphen haben.
|
auch negativ sein kann. Der Graph ist dann eine nach unten geöffnete Parabel.
aussagen, wenn der Scheitel der Parabel auf der y-Achse liegt?
auf den Graphen haben.

