Der Funktionsbegriff

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche

In den bisherigen Aufgaben ist es darum gegangen, Abhängigkeiten

  • durch eine Formel auszudrücken und
  • in Tabellenform wiederzugeben

Was haben das Handybeispiel und das Schachtelbeispiel gemeinsam? In beiden Fällen haben wir Vorschriften betrachtet, die es gestatten,

einem gegebenen Objekt (z.B. die Länge der Quadratseite x) Fehler beim Parsen(Syntaxfehler): \right

ein anderes davon abhängiges Objekt (z.B. das Schachtelvolumen V(x)) 

zuzuordnen. Diese Idee der Zuordnung ist in der Mathematik sehr wichtig. Dabei können wir an ganz unterschiedliche Objekte (wie beispielsweise natürliche Zahlen oder reelle Zahlen) denken.

Wir wollen nun etwas genauer formulieren, wie die Idee der Zuordnung für die Mathematik nutzbar gemacht werden kann. Dazu müssen wir - wie es dem Genauigkeitsanspruch der Mathematik entspricht - für jede konkrete Zuordnung festlegen, um welche Objekte es sich dabei handelt. Wir fassen alle möglichen "gegebenen Objekte" in einer Menge A zusammen und stellen uns vor, dass alle möglichen "abhängigen Objekte" in einer Menge B liegen. So gelangen wir zur Definition des Funktionsbegriffs, wie er in der Mathematik seit mehr als 100 Jahren verwendet wird:

Nuvola apps kig.png   Merke

Definition:
Seien A und B zwei Mengen. Eine Funktion  f von A nach B ist eine Vorschrift, die jedem Element der Menge A ein (d.h. genau ein) Element der Menge B zuweist.

Bezeichnungen:

Die Menge A nennen wir Definitionsmenge, die Menge B heißt Zielmenge.
Wie andere mathematische Objekte auch werden Funktionen mit Symbolen (in der Regel mit Buchstaben) bezeichnet. Bezeichnen wir eine Funktion von A nach B mit dem Buchstaben f, so schreiben wir dafür auch

   Fehler beim Parsen(Syntaxfehler): f : A \right B
      gesprochen: "f ist eine Funktion von A nach B"

Wir sagen auch: Jedes x \in A wird von der Funktion f auf ein Element von B abgebildet. Dieses Element von B schreiben wir als f(x).

Funktionen werden manchmal auch Abbildungen genannt.
Lässt sich durch einen Term (d.h. durch eine Formel) angeben, wie f(x) aus x ermittelt wird, so sprechen wir von einer "Termdarstellung der Funktion f". So ist beispielsweise durch die Termdarstellung

  f(x) = x^2

jene Funktion definiert, die jedem Element der Definitionsmenge sein Quadrat zuordnet. Die Aussage f(x) = x^2 wird auch als Funktionsgleichung bezeichnet. Eine andere Schreibweise dafür ist

  Fehler beim Parsen(Syntaxfehler): f : x \right x^2

.

Eine Termdarstellung ist eine durch einen Term ausgedrückte Zuordnungsvorschrift.

Die meisten elektronischen Rechenwerkzeuge gestatten es, eine Funktion, d.h. eine Zuordnungsvorschrift einzugeben, um sie später bei Bedarf anwenden zu können.

Bemerkung:
In vielen Anwendung der Mathematik auf reale Situationen kommen Abhängigkeiten vor, die durch Formeln beschrieben werden. Beim Aufstellen eines mathematisch strengen Modells einer solchen Situation ist es oft nötig, von Formeln zu Funktionen überzugehen.

Diese Bemerkungen zum Funktionsbegriff stellen dar, worauf es dabei ankommt. Sie werden dir bei den nachfolgenden Aufgaben helfen.

  Aufgabe 1  Stift.gif

In dieser Aufgabe sollst du den bereits bekannten Zusammenhang zwischen der Gesprächsdauer und der Höhe der Telefonrechnung als Funktion formulieren.
Die Höhe der Handyrechnung in Abhängigkeit von der Gesprächsdauer kann durch die Formel

H(t) = 0,06 t + 15

beschrieben werden.

  1. Welche Werte von t sind zulässig, welche nicht?
  2. Welche Möglichkeiten hast du, H im strengen mathematischen Sinn als Funktion Fehler beim Parsen(Syntaxfehler): H: A \right B
zu definieren? Gib die Definitions- und Zielmenge an! 
  1. Gib die abhängige und die unabhängige Variable an!
  2. Gib die Funktionswerte für t = 0, 15, 43 und 167 an!
  3. Für welche Argumente ergibt sich ein Funktionswert von 16,5; 18,84; 26,1?


  1. t kann Werte  \ge 0 annehmen.
  2. Definitionsmenge ist R^+, Zielmenge ist R.
  3. Die unabhängige Variabel ist t, die abhängige Variable H(t).
  4.  H(0)=15; H(15)=15,9; H(43)=17,58; H(167)=25,02
  5.  H(25)=16,5; H(64)=18,84; H(185)=26,1
  Aufgabe 2  Stift.gif

In dieser Aufgabe sollst du einen bereits bekannten Zusammenhang zwischen geometrischen Größen als Funktion formulieren.
Im Schachtelbeispiel tritt die Formel

V(x) = (6-2x)^2 x

auf.

  1. Welche Werte von x sind im Rahmen dieses Beispiels (sinnvollerweise) zulässig, welche nicht?
  2. Welche Möglichkeiten hast du, V im strengen mathematischen Sinn als Funktion Fehler beim Parsen(Syntaxfehler): V: A \right B
zu definieren? (Tipp: Setze die Werte x = 4, x = 10 und x = -1 ein und berechne jeweils V(x). Was bedeuten die Resultate?) Gib Definitions- und Zielmenge an! 
  1. Gib die Funktionswerte für x = 0,5; 1,3 und 2,4 an!
  2. Für welche Argumente ergibt sich ein Funktionswert von 6,272; 12,544 bzw. 0,972?


  1. x kann Werte  0 \le x \le 3 annehmen.
  2. Definitionsmenge ist [0;3], Zielmenge ist R.
  3.  V(0,5)=12,5; H(1,3)=15,028; H(2,4)=3,456
  4.  H(0,2)=6,272; H(1,6)=12,544; H(2,7)=0,972

Bei 4. sind nur jeweils eine Lösung angegeben. Mit einem CAS erhältst du natürlich alle Lösungen.

Funktionen_Einstieg/Graphen