Quadratische Funktionen 2 - Köln-Arena

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche

Die Köln-Arena wird von einem parabelförmigen Bogen überspannt. Parabeln kennst du als Graphen quadratischer Funktionen. Hier ist die Parabel allerdings nach unten geöffnet. Finde mit Hilfe des Applets die Parameter a und c zur quadratischen Funktion f(x) = a x^2 + c.



a = -0,15, c = 2,1, also f(x) = -0,15 x^2 + 2,1


Nuvola apps kig.png   Merke

Der Koeffizient von x^2 auch negativ sein kann. Der Graph ist dann eine nach unten geöffnete Parabel.

Liegt das Bild nicht so im Koordinatensystem, dass der Scheitel auf der y-Achse ist, so kann man trotzdem eine Parabel über den Bogen legen. Es ist ja immer noch das gleiche Bild. Die quadratische Funktion hat dann allerdings die Funktionsgleichung f(x) = a x^2 + bx + c mit den Parameter a, b, c.
Finde mit Hilfe des Applets die Werte für a, b und c.


a = -0,15, b = 1,45, c = 0,8, also f(x) = -0,15 x^2 +1,45x + 0,8


Durch quadratische Ergänzung kannst du den Funktionsterm a x^2 + bx + c auf die Form  a(x-d)^2 + e bringen. Im folgenden Applet ist die quadratische Funktion in dieser Form gegeben. Finde die Parameter a, d, e.


a= -0,15, d = 4,85, e = 4,3, also f(x) = -0,15(x - 4,85)^2 + 4,3


Stift.gif   Aufgabe
  1. Was kannst du über die Parameter a, b, c in  f(x) = a x^2 + bx + c aussagen, wenn der Scheitel der Parabel auf der y-Achse liegt?
  2. Was kannst du über die Parameter a, d, e in  f(x) = a (x - d)^2 + e aussagen, wenn der Scheitel der Parabel auf der y-Achse liegt?
  3. Für welche Werte von a ist die Parabel nach unten geöffnet?
  4. Für welche Werte von a ist die Parabel nach oben geöffnet?

  1. b = 0
  2. d = 0
  3. a < 0
  4. a > 0


Maehnrot.jpg Als nächstes wollen wir untersuchen, welchen Einfluss die Parameter a, d und e in der Funktionsgleichung f(x) = a (x - d)^2 + c auf den Graphen haben.

Pfeil.gif   Hier geht es weiter.