Wurzelfunktionen Eigenschaften
Startseite --- Die Wurzelfunktion - Übungen - Anwendungen - Weitere Eigenschaften --- Die allgemeine Wurzelfunktion - Übungen und Anwendungen --- Die Wurzelfunktion als Umkehrfunktion
Der Differenzenquotient = ist der Quotient der Änderung der Funktionswerte y durch die
Änderung der Abszissenwerte x.
- Er gibt die Steigung einer Sekante durch die Punkte und .
- Er ermöglicht die Berechnung des Steigungswinkels.
- Er gibt die mittlere Änderungsrate an.
Zeichne den Graphen der Funktionen und ermittle die Steigung der Sekante durch die Punkte und ! Gib den Steigungswinkel der Sekante an!
|
Gib für die folgenden zwei funktionalen Abhängigkeiten a) Dem Oberflächeninhalt einer Kugel wird die Länge des Radius zugeordnet.
|
Verwende die beiden funktionalen Abhängigkeiten aus Aufgabe 16 und a) gib die mittlere Änderungsrate für beide Funktionen im Intervall [2;3] an! b) halte schriftlich fest, welche Bedeutung die mittlere Änderungsrate in diesem Zusammenhang hat! Löse die Aufgabe mithilfe von GeoGebra oder einer Tabellenkalkulation! |
Aufgabe 15
Aufgabe 16
Aufgabe 17
b) Die mittlere Änderungsrate bedeutet in diesem Zusammenhang das Verhältnis der Änderung des Radius zur Änderung der Oberfläche einer Kugel im Intervall [2;3].
b) Die mittlere Änderungsrate bedeutet in diesem Zusammenhang das Verhältnis der Änderung des Radius zur Änderung der Oberfläche einer Kugel im Intervall [2;3].
Zurück zu Wurzelfunktion oder weiter mit Übungen oder mit Anwendungen.