Wurzelfunktion Übungen 1: Unterschied zwischen den Versionen
Zeile 30: | Zeile 30: | ||
Variiere mit dem Schieberegler den Wert von a. | Variiere mit dem Schieberegler den Wert von a. | ||
<center><ggb_applet width="650" height="472" version="4.0" ggbBase64="UEsDBBQACAAIAAp+O0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAAp+O0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVdZj9s2EH5OfsVAT22xXpO6bAd2giZFkAU2aYFNi6JvlETLzEqiSlI+gvz4DklJljcHkgatsV5ew/nmHnr97FhXsOdKC9lsAnpNAuBNLgvRlJugM9vZMnj29PG65LLkmWKwlapmZhPEllIUm6AgGQk55zPO8tUsZuF2xpZkOwtDynm8XEWrPAsAjlo8aeQbVnPdspzf5Ttes1uZM+OAd8a0T+bzw+FwPUBdS1XOyzK7PuoiABSz0ZugnzxBdheXDpEjDwmh8z9f33r2M9Fow5qcB2BV6MTTx4/WB9EU8gAHUZjdJkiTZQA7Lsod6pQS1GluiVo0SMtzI/Zc49XJ0uls6jZwZKyx54/8DKpRnQAKsRcFV5uAXEckWiU0SheLJaVJEoBUgjemJ6U95Hxgtt4LfvBc7cwBxgEYKauMWYbw4QOEJCRwZQfqhxCHNPVHxO+RyA+hH2I/JJ4m9tdjTxp7mtjTxFEAe6FFVvFNsGWVRgOKZqvQeeNam1PFnTz9xll5eoU6afEeiSNrUW9x3Cfkyn7RzFfxYOqJknSCalT3jaADZJp8A2T4XYpGA2b4KTXD5DNqpl8A9Xp/jZ50qidCuT/3/Qgx+pKaDxH9+vsA0/h/UXE9H1Jl3WcH6J2l7aPH8FrbfIlWkKxs2FNIMDfSBUZ5AnSFwyIEzAagCcQJLukSUjsuIFrgQQwRLMHS0QhcciRL/BcvHLMUEmRmdxeYk0ARKIYkAupyKgbMJHB5iTkaRkiRJJDgJQtPQ8siSiFOcRUtIUYZbUouKBJGeBHXCB9CRCGyl+kCwhRSy4/GNtXTpRUdWYaQEkipZYhZjRntsxnplxBZbdLeXKJpO3NhorwuhqmR7egLpMZ6dC56vj5d1MRH64plvMI2cWc9CbBnlc0IB7SVjYHBiaHfKxVrdyLXd9wYvKXhHduzW2b48SVS6wHb0eay0b8paV7IqqsbDZDLiowyy4pO5uEoNS6iyUE8PUgmB+lkvvgkrsQT6DRHfKn0QM6K4sZSnEsDWvLXpjo9V5zdt1JcqrGeu46z5l1eiUKw5g8MVoti7QLnBkTODSiO40EQqYq7k8YIhuNfXElrx8X16uITwMkfhSl24+kHHa5zZpMvXl1eWuLRqT9LyOUt6rH5fnQRO/JR+1KJYjq/0c9lVYy2cOq/YK3plHs6YG1UVqmfm7LiLkRctcW+nN9n8njnYyPyvN6eWlwRj5+VzuyApSG03bLsx8yPjsYKNlIRR0McBRmCTRTjOV2FjsKNmR8dFUavF61XlA5aUjLACO0KGgku0saFvu3yXSPM7bAwIr/vNaWe/k1XZ/wcQJbgF+GfJP6tdYlC/zuU9fxBGK7vuWp41Uc9uruTnfZJPEmIgueixqU/6M3GrEt/R5n8bsFLxXt6VrmnmzeqOyXTgP5o27F6qWR90+zfYrw8EGA9H6Rc61yJ1kYlZNgp7vk58gqhGTaaYnrPpilaI7cNBQ1irLUwgTuzk8q9zrDu4Gizs+I1PsbAuBBsuporkY+2Z+6Zh0J1vdyj06zhQWbvsCA+8JdbOBo8/kyQAqvaHbOPwz7pKnbi6sI0jttrWQzAPWxlX5VQC+yTM0yKmh0xkZFfprFWGnxXoy+a87vaS9bXGnyV2Fc73ojseEKPumf8Vhwn9kQTifcYEuxCl3OuGKzi9/hU1S6hTZ+6bvJKFAVvRmFZg8HjXICFrPXaAvYQ7mN9vNqi9q5oTBzf+8V66NgqRLNsegtv8TfK0XarH44/wgYY/AT6b2Vw5VvXpU+3XePiIDhf/7IDJ/H/NR4kX+lB8m8NOTXGfBrZrsf0v5ae/gNQSwcIiWjn9loFAADKDQAAUEsBAhQAFAAIAAgACn47QNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAKfjtAiWjn9loFAADKDQAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAPEFAAAAAA==" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /></center> | <center><ggb_applet width="650" height="472" version="4.0" ggbBase64="UEsDBBQACAAIAAp+O0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAAp+O0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVdZj9s2EH5OfsVAT22xXpO6bAd2giZFkAU2aYFNi6JvlETLzEqiSlI+gvz4DklJljcHkgatsV5ew/nmHnr97FhXsOdKC9lsAnpNAuBNLgvRlJugM9vZMnj29PG65LLkmWKwlapmZhPEllIUm6AgGQk55zPO8tUsZuF2xpZkOwtDynm8XEWrPAsAjlo8aeQbVnPdspzf5Ttes1uZM+OAd8a0T+bzw+FwPUBdS1XOyzK7PuoiABSz0ZugnzxBdheXDpEjDwmh8z9f33r2M9Fow5qcB2BV6MTTx4/WB9EU8gAHUZjdJkiTZQA7Lsod6pQS1GluiVo0SMtzI/Zc49XJ0uls6jZwZKyx54/8DKpRnQAKsRcFV5uAXEckWiU0SheLJaVJEoBUgjemJ6U95Hxgtt4LfvBc7cwBxgEYKauMWYbw4QOEJCRwZQfqhxCHNPVHxO+RyA+hH2I/JJ4m9tdjTxp7mtjTxFEAe6FFVvFNsGWVRgOKZqvQeeNam1PFnTz9xll5eoU6afEeiSNrUW9x3Cfkyn7RzFfxYOqJknSCalT3jaADZJp8A2T4XYpGA2b4KTXD5DNqpl8A9Xp/jZ50qidCuT/3/Qgx+pKaDxH9+vsA0/h/UXE9H1Jl3WcH6J2l7aPH8FrbfIlWkKxs2FNIMDfSBUZ5AnSFwyIEzAagCcQJLukSUjsuIFrgQQwRLMHS0QhcciRL/BcvHLMUEmRmdxeYk0ARKIYkAupyKgbMJHB5iTkaRkiRJJDgJQtPQ8siSiFOcRUtIUYZbUouKBJGeBHXCB9CRCGyl+kCwhRSy4/GNtXTpRUdWYaQEkipZYhZjRntsxnplxBZbdLeXKJpO3NhorwuhqmR7egLpMZ6dC56vj5d1MRH64plvMI2cWc9CbBnlc0IB7SVjYHBiaHfKxVrdyLXd9wYvKXhHduzW2b48SVS6wHb0eay0b8paV7IqqsbDZDLiowyy4pO5uEoNS6iyUE8PUgmB+lkvvgkrsQT6DRHfKn0QM6K4sZSnEsDWvLXpjo9V5zdt1JcqrGeu46z5l1eiUKw5g8MVoti7QLnBkTODSiO40EQqYq7k8YIhuNfXElrx8X16uITwMkfhSl24+kHHa5zZpMvXl1eWuLRqT9LyOUt6rH5fnQRO/JR+1KJYjq/0c9lVYy2cOq/YK3plHs6YG1UVqmfm7LiLkRctcW+nN9n8njnYyPyvN6eWlwRj5+VzuyApSG03bLsx8yPjsYKNlIRR0McBRmCTRTjOV2FjsKNmR8dFUavF61XlA5aUjLACO0KGgku0saFvu3yXSPM7bAwIr/vNaWe/k1XZ/wcQJbgF+GfJP6tdYlC/zuU9fxBGK7vuWp41Uc9uruTnfZJPEmIgueixqU/6M3GrEt/R5n8bsFLxXt6VrmnmzeqOyXTgP5o27F6qWR90+zfYrw8EGA9H6Rc61yJ1kYlZNgp7vk58gqhGTaaYnrPpilaI7cNBQ1irLUwgTuzk8q9zrDu4Gizs+I1PsbAuBBsuporkY+2Z+6Zh0J1vdyj06zhQWbvsCA+8JdbOBo8/kyQAqvaHbOPwz7pKnbi6sI0jttrWQzAPWxlX5VQC+yTM0yKmh0xkZFfprFWGnxXoy+a87vaS9bXGnyV2Fc73ojseEKPumf8Vhwn9kQTifcYEuxCl3OuGKzi9/hU1S6hTZ+6bvJKFAVvRmFZg8HjXICFrPXaAvYQ7mN9vNqi9q5oTBzf+8V66NgqRLNsegtv8TfK0XarH44/wgYY/AT6b2Vw5VvXpU+3XePiIDhf/7IDJ/H/NR4kX+lB8m8NOTXGfBrZrsf0v5ae/gNQSwcIiWjn9loFAADKDQAAUEsBAhQAFAAIAAgACn47QNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAKfjtAiWjn9loFAADKDQAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAPEFAAAAAA==" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /></center> | ||
− | + | Beschreibe, wie sich der Graph der Wurzelfunktion <math>x \rightarrow \sqrt x</math> ändert für | |
# a = -1 | # a = -1 | ||
# 0 < a < 1 | # 0 < a < 1 | ||
Zeile 36: | Zeile 36: | ||
# a < 0 | # a < 0 | ||
− | + | Wie wirkt sich die Änderung des Parameters a auf die Definitions- und Wertemenge aus? | |
+ | |||
+ | |||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zeile 42: | Zeile 44: | ||
# Für 0 < a < 1 wird der Graph der Wurzelfunktion <math>x \rightarrow \sqrt x</math> in y-Richtung gestaucht. | # Für 0 < a < 1 wird der Graph der Wurzelfunktion <math>x \rightarrow \sqrt x</math> in y-Richtung gestaucht. | ||
# Für 1 < a wir der Graph der Wurzelfunktion <math>x \rightarrow \sqrt x</math> in y-Richtung gestreckt. | # Für 1 < a wir der Graph der Wurzelfunktion <math>x \rightarrow \sqrt x</math> in y-Richtung gestreckt. | ||
− | # Für negative a wird der Graph von 2. oder 3. an der y-Achse gespiegelt.}} | + | # Für negative a wird der Graph von 2. oder 3. an der y-Achse gespiegelt. |
+ | |||
+ | Die Definitionsmenge bleibt <math>R^+_0</math>. <br> | ||
+ | Für a > 0 ist die Wertemenge <math>R^+_0</math>, für a = 0 ist sie {0} und für a < 0 <math>R^-_0</math> }} | ||
Version vom 28. April 2012, 11:57 Uhr
Startseite --- Die Wurzelfunktion - Übungen - Anwendungen --- Die allgemeine Wurzelfunktion - Übungen - Anwendungen --- Die Wurzelfunktion als Umkehrfunktion
Bei den Übungen zur Wurzelfunktion lernst du weitere sich aus ihr ergebene Funktionen kennen.
Zeichne den Graphen der Funktionen Beschreibe mit Worten die besondere Lage dieser beiden Graphen zueinander. |
Neben der Quadratwurzelfunktion treten auch Funktionsterme der Art
,
und
auf. Diese wirst du nun mit der Methode "Gruppenpuzzle" untersuchen.
Jede der folgenden Aufgabenstellungen (6, 7 und 8) wird von ein oder zwei Gruppen bearbeitet. Jedes Gruppenmitglied muss in der Lage sein, das Wissen weiterzugeben.
Überlegt gemeinsam, welche Informationen am wichtigsten sind und unbedingt in euren Mitschriften stehen sollten.
{{Arbeiten|
NUMMER=2| ARBEIT=
Im Applet ist der Graph der Wurzelfunktion mit
dargestellt.
Variiere mit dem Schieberegler den Wert von a.
Beschreibe, wie sich der Graph der Wurzelfunktion ändert für
- a = -1
- 0 < a < 1
- 1 < a
- a < 0
Wie wirkt sich die Änderung des Parameters a auf die Definitions- und Wertemenge aus?
Du betrachstest die Funktion
|
Skizziere und vergleiche die Graphen |
Es ist die Funktion
|
a) Öffne dieses Arbeitsblatt. Wähle Niveau 2 und finde zum gegebenen Funktionsgraph den passenden Funktionsterm. b) Löse dieses Quiz. |
Zurück zu Wurzelfunktion oder weiter mit Anwendungen