Wurzelfunktion Übungen 1: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 28: Zeile 28:
 
NUMMER=2| ARBEIT=  
 
NUMMER=2| ARBEIT=  
 
Im Applet ist der Graph der Wurzelfunktion <math> f:x \rightarrow a \sqrt x </math> mit <math>x \in R^+_0</math> dargestellt.<br>
 
Im Applet ist der Graph der Wurzelfunktion <math> f:x \rightarrow a \sqrt x </math> mit <math>x \in R^+_0</math> dargestellt.<br>
Variiere mit dem Schieberegler den Wert von a.
+
Variiere mit dem Schieberegler den Wert von <math>a</math>.
 
<center><ggb_applet width="650" height="472"  version="4.0" ggbBase64="UEsDBBQACAAIAAp+O0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAAp+O0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVdZj9s2EH5OfsVAT22xXpO6bAd2giZFkAU2aYFNi6JvlETLzEqiSlI+gvz4DklJljcHkgatsV5ew/nmHnr97FhXsOdKC9lsAnpNAuBNLgvRlJugM9vZMnj29PG65LLkmWKwlapmZhPEllIUm6AgGQk55zPO8tUsZuF2xpZkOwtDynm8XEWrPAsAjlo8aeQbVnPdspzf5Ttes1uZM+OAd8a0T+bzw+FwPUBdS1XOyzK7PuoiABSz0ZugnzxBdheXDpEjDwmh8z9f33r2M9Fow5qcB2BV6MTTx4/WB9EU8gAHUZjdJkiTZQA7Lsod6pQS1GluiVo0SMtzI/Zc49XJ0uls6jZwZKyx54/8DKpRnQAKsRcFV5uAXEckWiU0SheLJaVJEoBUgjemJ6U95Hxgtt4LfvBc7cwBxgEYKauMWYbw4QOEJCRwZQfqhxCHNPVHxO+RyA+hH2I/JJ4m9tdjTxp7mtjTxFEAe6FFVvFNsGWVRgOKZqvQeeNam1PFnTz9xll5eoU6afEeiSNrUW9x3Cfkyn7RzFfxYOqJknSCalT3jaADZJp8A2T4XYpGA2b4KTXD5DNqpl8A9Xp/jZ50qidCuT/3/Qgx+pKaDxH9+vsA0/h/UXE9H1Jl3WcH6J2l7aPH8FrbfIlWkKxs2FNIMDfSBUZ5AnSFwyIEzAagCcQJLukSUjsuIFrgQQwRLMHS0QhcciRL/BcvHLMUEmRmdxeYk0ARKIYkAupyKgbMJHB5iTkaRkiRJJDgJQtPQ8siSiFOcRUtIUYZbUouKBJGeBHXCB9CRCGyl+kCwhRSy4/GNtXTpRUdWYaQEkipZYhZjRntsxnplxBZbdLeXKJpO3NhorwuhqmR7egLpMZ6dC56vj5d1MRH64plvMI2cWc9CbBnlc0IB7SVjYHBiaHfKxVrdyLXd9wYvKXhHduzW2b48SVS6wHb0eay0b8paV7IqqsbDZDLiowyy4pO5uEoNS6iyUE8PUgmB+lkvvgkrsQT6DRHfKn0QM6K4sZSnEsDWvLXpjo9V5zdt1JcqrGeu46z5l1eiUKw5g8MVoti7QLnBkTODSiO40EQqYq7k8YIhuNfXElrx8X16uITwMkfhSl24+kHHa5zZpMvXl1eWuLRqT9LyOUt6rH5fnQRO/JR+1KJYjq/0c9lVYy2cOq/YK3plHs6YG1UVqmfm7LiLkRctcW+nN9n8njnYyPyvN6eWlwRj5+VzuyApSG03bLsx8yPjsYKNlIRR0McBRmCTRTjOV2FjsKNmR8dFUavF61XlA5aUjLACO0KGgku0saFvu3yXSPM7bAwIr/vNaWe/k1XZ/wcQJbgF+GfJP6tdYlC/zuU9fxBGK7vuWp41Uc9uruTnfZJPEmIgueixqU/6M3GrEt/R5n8bsFLxXt6VrmnmzeqOyXTgP5o27F6qWR90+zfYrw8EGA9H6Rc61yJ1kYlZNgp7vk58gqhGTaaYnrPpilaI7cNBQ1irLUwgTuzk8q9zrDu4Gizs+I1PsbAuBBsuporkY+2Z+6Zh0J1vdyj06zhQWbvsCA+8JdbOBo8/kyQAqvaHbOPwz7pKnbi6sI0jttrWQzAPWxlX5VQC+yTM0yKmh0xkZFfprFWGnxXoy+a87vaS9bXGnyV2Fc73ojseEKPumf8Vhwn9kQTifcYEuxCl3OuGKzi9/hU1S6hTZ+6bvJKFAVvRmFZg8HjXICFrPXaAvYQ7mN9vNqi9q5oTBzf+8V66NgqRLNsegtv8TfK0XarH44/wgYY/AT6b2Vw5VvXpU+3XePiIDhf/7IDJ/H/NR4kX+lB8m8NOTXGfBrZrsf0v5ae/gNQSwcIiWjn9loFAADKDQAAUEsBAhQAFAAIAAgACn47QNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAKfjtAiWjn9loFAADKDQAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAPEFAAAAAA==" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /></center>
 
<center><ggb_applet width="650" height="472"  version="4.0" ggbBase64="UEsDBBQACAAIAAp+O0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAAp+O0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVdZj9s2EH5OfsVAT22xXpO6bAd2giZFkAU2aYFNi6JvlETLzEqiSlI+gvz4DklJljcHkgatsV5ew/nmHnr97FhXsOdKC9lsAnpNAuBNLgvRlJugM9vZMnj29PG65LLkmWKwlapmZhPEllIUm6AgGQk55zPO8tUsZuF2xpZkOwtDynm8XEWrPAsAjlo8aeQbVnPdspzf5Ttes1uZM+OAd8a0T+bzw+FwPUBdS1XOyzK7PuoiABSz0ZugnzxBdheXDpEjDwmh8z9f33r2M9Fow5qcB2BV6MTTx4/WB9EU8gAHUZjdJkiTZQA7Lsod6pQS1GluiVo0SMtzI/Zc49XJ0uls6jZwZKyx54/8DKpRnQAKsRcFV5uAXEckWiU0SheLJaVJEoBUgjemJ6U95Hxgtt4LfvBc7cwBxgEYKauMWYbw4QOEJCRwZQfqhxCHNPVHxO+RyA+hH2I/JJ4m9tdjTxp7mtjTxFEAe6FFVvFNsGWVRgOKZqvQeeNam1PFnTz9xll5eoU6afEeiSNrUW9x3Cfkyn7RzFfxYOqJknSCalT3jaADZJp8A2T4XYpGA2b4KTXD5DNqpl8A9Xp/jZ50qidCuT/3/Qgx+pKaDxH9+vsA0/h/UXE9H1Jl3WcH6J2l7aPH8FrbfIlWkKxs2FNIMDfSBUZ5AnSFwyIEzAagCcQJLukSUjsuIFrgQQwRLMHS0QhcciRL/BcvHLMUEmRmdxeYk0ARKIYkAupyKgbMJHB5iTkaRkiRJJDgJQtPQ8siSiFOcRUtIUYZbUouKBJGeBHXCB9CRCGyl+kCwhRSy4/GNtXTpRUdWYaQEkipZYhZjRntsxnplxBZbdLeXKJpO3NhorwuhqmR7egLpMZ6dC56vj5d1MRH64plvMI2cWc9CbBnlc0IB7SVjYHBiaHfKxVrdyLXd9wYvKXhHduzW2b48SVS6wHb0eay0b8paV7IqqsbDZDLiowyy4pO5uEoNS6iyUE8PUgmB+lkvvgkrsQT6DRHfKn0QM6K4sZSnEsDWvLXpjo9V5zdt1JcqrGeu46z5l1eiUKw5g8MVoti7QLnBkTODSiO40EQqYq7k8YIhuNfXElrx8X16uITwMkfhSl24+kHHa5zZpMvXl1eWuLRqT9LyOUt6rH5fnQRO/JR+1KJYjq/0c9lVYy2cOq/YK3plHs6YG1UVqmfm7LiLkRctcW+nN9n8njnYyPyvN6eWlwRj5+VzuyApSG03bLsx8yPjsYKNlIRR0McBRmCTRTjOV2FjsKNmR8dFUavF61XlA5aUjLACO0KGgku0saFvu3yXSPM7bAwIr/vNaWe/k1XZ/wcQJbgF+GfJP6tdYlC/zuU9fxBGK7vuWp41Uc9uruTnfZJPEmIgueixqU/6M3GrEt/R5n8bsFLxXt6VrmnmzeqOyXTgP5o27F6qWR90+zfYrw8EGA9H6Rc61yJ1kYlZNgp7vk58gqhGTaaYnrPpilaI7cNBQ1irLUwgTuzk8q9zrDu4Gizs+I1PsbAuBBsuporkY+2Z+6Zh0J1vdyj06zhQWbvsCA+8JdbOBo8/kyQAqvaHbOPwz7pKnbi6sI0jttrWQzAPWxlX5VQC+yTM0yKmh0xkZFfprFWGnxXoy+a87vaS9bXGnyV2Fc73ojseEKPumf8Vhwn9kQTifcYEuxCl3OuGKzi9/hU1S6hTZ+6bvJKFAVvRmFZg8HjXICFrPXaAvYQ7mN9vNqi9q5oTBzf+8V66NgqRLNsegtv8TfK0XarH44/wgYY/AT6b2Vw5VvXpU+3XePiIDhf/7IDJ/H/NR4kX+lB8m8NOTXGfBrZrsf0v5ae/gNQSwcIiWjn9loFAADKDQAAUEsBAhQAFAAIAAgACn47QNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAKfjtAiWjn9loFAADKDQAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAPEFAAAAAA==" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /></center>
 
Beschreibe, wie sich der Graph der Wurzelfunktion <math>x \rightarrow \sqrt x</math> ändert für
 
Beschreibe, wie sich der Graph der Wurzelfunktion <math>x \rightarrow \sqrt x</math> ändert für
# a = -1
+
# <math>a = -1</math>
# 0 < a < 1
+
# <math>0 < a < 1</math>
# 1 < a
+
# <math>1 < a</math>
# a < 0
+
# <math>a < 0</math>
  
Wie wirkt sich die Änderung des Parameters a auf die Definitions- und Wertemenge aus?
+
Wie wirkt sich die Änderung des Parameters <math>a</math> auf die Definitions- und Wertemenge aus?
 
}}
 
}}
  
  
 
{{Lösung versteckt|1=
 
{{Lösung versteckt|1=
# Für a = -1 wird der Graph der Wurzelfunktion <math>x \rightarrow \sqrt x</math> an der x-Achse gespiegelt.
+
# Für <math>a = -1</math> wird der Graph der Wurzelfunktion <math>x \rightarrow \sqrt x</math> an der x-Achse gespiegelt.
# Für 0 < a < 1 wird der Graph der Wurzelfunktion <math>x \rightarrow \sqrt x</math> in y-Richtung gestaucht.  
+
# Für <math>0 < a < 1</math> wird der Graph der Wurzelfunktion <math>x \rightarrow \sqrt x</math> in y-Richtung gestaucht.  
# Für 1 < a wir der Graph der Wurzelfunktion <math>x \rightarrow \sqrt x</math> in y-Richtung gestreckt.
+
# Für <math>1 < a</math> wir der Graph der Wurzelfunktion <math>x \rightarrow \sqrt x</math> in y-Richtung gestreckt.
# Für negative a wird der Graph von 2. oder 3. an der y-Achse gespiegelt.
+
# Für negative <math>a</math> wird der Graph von 2. oder 3. an der y-Achse gespiegelt.
  
 
Die Definitionsmenge bleibt <math>R^+_0</math>. <br>
 
Die Definitionsmenge bleibt <math>R^+_0</math>. <br>
Für a > 0 ist die Wertemenge <math>R^+_0</math>, für a = 0 ist sie {0} und für a < 0 <math>R^-_0</math> }}
+
Für <math>a > 0</math> ist die Wertemenge <math>R^+_0</math>, für <math>a = 0</math> ist sie {0} und für <math>a < 0</math> <math>R^-_0</math> }}
  
  

Version vom 28. April 2012, 12:02 Uhr

Startseite --- Die Wurzelfunktion - Übungen - Anwendungen --- Die allgemeine Wurzelfunktion - Übungen - Anwendungen --- Die Wurzelfunktion als Umkehrfunktion


Bei den Übungen zur Wurzelfunktion lernst du weitere sich aus ihr ergebene Funktionen kennen.

  Aufgabe 1  Stift.gif

Zeichne den Graphen der Funktionen f:x \rightarrow x^2 im Intervall [0;3] und den Graphen der Funktion  g:x \rightarrow \sqrt x im Intervall [0;7] in ein Koordinatensystem.

Beschreibe mit Worten die besondere Lage dieser beiden Graphen zueinander.


[Lösung anzeigen]


Neben der Quadratwurzelfunktion treten auch Funktionsterme der Art

 a \sqrt x,
 a \sqrt x + b und
 \sqrt {ax+b}

auf. Diese wirst du nun mit der Methode "Gruppenpuzzle" untersuchen.

Jede der folgenden Aufgabenstellungen (6, 7 und 8) wird von ein oder zwei Gruppen bearbeitet. Jedes Gruppenmitglied muss in der Lage sein, das Wissen weiterzugeben.
Überlegt gemeinsam, welche Informationen am wichtigsten sind und unbedingt in euren Mitschriften stehen sollten.

  Aufgabe 2  Stift.gif

Im Applet ist der Graph der Wurzelfunktion  f:x \rightarrow a \sqrt x mit x \in R^+_0 dargestellt.
Variiere mit dem Schieberegler den Wert von a.

Beschreibe, wie sich der Graph der Wurzelfunktion x \rightarrow \sqrt x ändert für

  1. a = -1
  2. 0 < a < 1
  3. 1 < a
  4. a < 0

Wie wirkt sich die Änderung des Parameters a auf die Definitions- und Wertemenge aus?


[Lösung anzeigen]


  Aufgabe 3  Stift.gif

Du betrachstest die Funktion f: x \rightarrow \sqrt{ax + b} . Im folgenden Applet kannst du mit den Schiebereglern die Werte für a und b verändern. Anfangs ist a = 1 und b = 0. Es ist der Graph der Quadratwurzelfunktion dargestellt.

1. Was passiert, wenn du den Wert von b änderst? Unterscheide  b > 0 und  b < 0.
2. Stelle wieder  b = 0 ein. Variiere nun a. Was stellst du fest?

3. Variiere nun a und b gleichzeitig und beachte was passiert.
4. Wo ist die Nullstelle der Funktion f: x \rightarrow \sqrt{ax + b} ?
5. Gib die Definitionsmenge der Funktion f: x \rightarrow \sqrt{ax + b} an.


[Lösung anzeigen]


  Aufgabe 3  Stift.gif

Skizziere und vergleiche die Graphen
a) f(x) = \sqrt{x+2}
b) g(x) = \sqrt x + 2
c) h(x) = \sqrt{x-2}
d) k(x) = \sqrt x - 2


[Lösung anzeigen]


  Aufgabe 4  Stift.gif

Es ist die Funktion f: x \rightarrow \sqrt{25-x^2} gegeben.

  1. Bestimme die Definitionsmenge.
  2. Zeichne den Graphen.
  3. Zeige, dass alle Punkte auf dem Graphen vom Ursprung den gleichen Abstand haben.
  4. Wie kann man den Graphen noch bezeichnen?

[Lösung anzeigen]


  Aufgabe 5  Stift.gif

a) Öffne dieses Arbeitsblatt. Wähle Niveau 2 und finde zum gegebenen Funktionsgraph den passenden Funktionsterm.
Hinweis zur Schreibweise: Schreibe für \sqrt x sqrt(x).

b) Löse dieses Quiz.



Zurück zu Wurzelfunktion oder weiter mit Anwendungen