Wurzelfunktion Einführung: Unterschied zwischen den Versionen
Zeile 36: | Zeile 36: | ||
<br> | <br> | ||
− | + | In der vorherigen Aufgabe hast du einigen Flächeninhalten exemplarisch ihre Seitenlänge zugeordnet. Mit dem folgenden Applet kannst du diesen Zusammenhang verallgemeinern. | |
+ | |||
<ggb_applet width="859" height="423" version="4.0" ggbBase64="UEsDBBQACAAIAA6hjD8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAOoYw/AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1ZW4/TOBR+hl9xlCeQmKmdW1vUgrhotSNxk4ZdrfZl5SRuayaxQ+x2WsSP32M7SdPpAMMAK5ZqWtvx8bl85+LTzuzxtiphwxstlJwH9JQEwGWuCiGX82BtFieT4PGju7MlV0ueNQwWqqmYmQexpRTFPOAsW4RRnJxMyHh6Ekf54mQak+IkI1MeZdEiz9IoANhq8VCqV6ziumY5P89XvGIvVM6ME7wypn44Gl1eXp52ok5Vsxwtl9npVhcBoJpSz4N28hDZHRy6jBx5SAgd/fXyhWd/IqQ2TOY8AGvCWjy6e2d2KWShLuFSFGY1DybpOIAVF8sV2pQkNICRJaoRkJrnRmy4xqODpbPZVHXgyJi0+3f8DMrenAAKsREFb+YBOaVjMiZRMk6SeDxJ0zAA1QguTUvbyRx13GYbwS89WztzEuMAjFJlxixH+PgRQhISeGAH6ocQhzT1W8Q/I5EfQj/Efkg8TeyPx5409jSxp4nRYxuhRVbyebBgpUYEhVw06L1+rc2u5E6f9sHeevoAbdLiAxJHBMPEQ47PCXlg3ym+Y7sxOjSSDqSaZv2VQjuRk2R6c5HhNxkadTJpPDmWGSafMDP9jFBv903spMkAWhTl/tz7SGL0OTOvSvTrbxOYxv+JibNRlyqzNjtAryxtGz2GV9rmSzSFZGrDnkKCuZGOMcoToFMcxiFgNgBNIE5wSSeQ2nEM0Rg3YohgApaORuCSI5ngRzx2zFJIkJl9OsacBIqCYkgioC6nYsBMApeXmKNhhBRJAgkesuJpaFlEKcQprqIJxKijTckxRcIID+IaxYcQUYjsYTqGMIXU8qOxTfV0YlVHliGkBFJqGWJWY0b7bEb6CUTWmrSFS8h6bQ4gyquimxpV975AaqxH+6rn69NBUbwzK1nGS7wnzq0nATastBnhBC2UNNA5MfTPlg2rVyLX59wYPKXhHduwF8zw7W9IrTvZjjZXUr9plHmmynUlNUCuStLrrEo6mIe91riIBhvxcCMZbKSD+fhauQp3YK05yleN7shZUZxZin1pQCRfy3L3tOHsolbi0IzZyF05M77OS1EIJv/EYLVSLC7Q30C2XHU3UDRNOkVUU5zvNEYwbP/mjcJSlZ6S4Ytiju38VpSQ0+nwharlzOZePD3cwNTatVt45oBf6zq+6R3Etry3fdmIYjg/009VWfRIOOOfsdqsG9c5YGVsrElP5LLkLkBcrcVrOb/I1PbcR0bkeb3d1bgiXn62dKADFoYwSZCgHTM/OhqrWE9FHA1xFKQLNVH0+3QaOgo3Zn50VBi7XrXWUNpZSUknRmhXzkhwkDQu8OfBNoC1FOaFX2ECifyiNZX6A6/WVcb38WMJngvfkvhe61AMvVbM7ruImY2uhOHsgjeSl23Uo8PXaq19Eg8SouC5qHDpN1rgmHXqH6iTf1rwZcNbela63s3D6nbJMKCPHjtWvzWqOpObtxgxVxSYjTotZzpvRG3jEjK8KS74PvYKoRleNMXwnE1TRCO3FwoCYixamMBrs1KNa8+w7uBos7PkFTZjYFwQynXFG5H34D9xfR4qtW717r1mgQeVvcOCeMVhbuFocPsTYQqsrFfMdYdtMLIdbw6gcdxeqqIT3IotbVsJlZCOTcW28wDTnWUaS6XBvhpdIfd9tVesLTXYjNmuHU9MQjvZzYPx1E4WYjvAEyESHzAk2IEt+2wxWMUvsFXVLqVNm7xu8rsoCi57ZZnE4HEuwEJWe2sB7xDug70/WqP1rmwMHN/65chDrtL0WL8OjnzRtRM3dYarLr07yA3dQa638Br76HX2tQmhrTNI6ws3fhiEmDPVlsqDu9U/vZJJB3ht6wa9Y5VqQXiKX+q2qN09/b4x957cfwDkfnCI5+gLQD+9HdC2EVz6IfPDbZHe40V/OF7PjvBqJ1+L2rOfDzX6w1B73qFGbo3X858HL/Kd8cpVVTFZgHTfgd6ocrdUMth35YzYagaMunRloYtCFllMvL1r05HhBV5iH0U9NfuHevrM0+PlxbD1LbwCrdhrcPcKdMD2PG9b67/2PqRJ5Jxmf3O55ZUYfv6m0HxpV70eFqjPazoozzdU9buF157VLbDn76U/on1fKKq6FLkwfeSU9vo5kwa7RO56ouNO74Lz2jbir+Xbhkltf+fzNJ37bg509gWYvzogbopyeBXlk0/eFb8AzPnPF80nR9XyF8C5+HlwvhrO/7OqcdQyvOlahu76uXXn8OZWNec7NA4tmKZhOT80/Ud2X6PhF1z3U1P7X5NH/wJQSwcI03OcU6kGAADSGQAAUEsBAhQAFAAIAAgADqGMP0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAOoYw/03OcU6kGAADSGQAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAEEHAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> | <ggb_applet width="859" height="423" version="4.0" ggbBase64="UEsDBBQACAAIAA6hjD8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAOoYw/AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1ZW4/TOBR+hl9xlCeQmKmdW1vUgrhotSNxk4ZdrfZl5SRuayaxQ+x2WsSP32M7SdPpAMMAK5ZqWtvx8bl85+LTzuzxtiphwxstlJwH9JQEwGWuCiGX82BtFieT4PGju7MlV0ueNQwWqqmYmQexpRTFPOAsW4RRnJxMyHh6Ekf54mQak+IkI1MeZdEiz9IoANhq8VCqV6ziumY5P89XvGIvVM6ME7wypn44Gl1eXp52ok5Vsxwtl9npVhcBoJpSz4N28hDZHRy6jBx5SAgd/fXyhWd/IqQ2TOY8AGvCWjy6e2d2KWShLuFSFGY1DybpOIAVF8sV2pQkNICRJaoRkJrnRmy4xqODpbPZVHXgyJi0+3f8DMrenAAKsREFb+YBOaVjMiZRMk6SeDxJ0zAA1QguTUvbyRx13GYbwS89WztzEuMAjFJlxixH+PgRQhISeGAH6ocQhzT1W8Q/I5EfQj/Efkg8TeyPx5409jSxp4nRYxuhRVbyebBgpUYEhVw06L1+rc2u5E6f9sHeevoAbdLiAxJHBMPEQ47PCXlg3ym+Y7sxOjSSDqSaZv2VQjuRk2R6c5HhNxkadTJpPDmWGSafMDP9jFBv903spMkAWhTl/tz7SGL0OTOvSvTrbxOYxv+JibNRlyqzNjtAryxtGz2GV9rmSzSFZGrDnkKCuZGOMcoToFMcxiFgNgBNIE5wSSeQ2nEM0Rg3YohgApaORuCSI5ngRzx2zFJIkJl9OsacBIqCYkgioC6nYsBMApeXmKNhhBRJAgkesuJpaFlEKcQprqIJxKijTckxRcIID+IaxYcQUYjsYTqGMIXU8qOxTfV0YlVHliGkBFJqGWJWY0b7bEb6CUTWmrSFS8h6bQ4gyquimxpV975AaqxH+6rn69NBUbwzK1nGS7wnzq0nATastBnhBC2UNNA5MfTPlg2rVyLX59wYPKXhHduwF8zw7W9IrTvZjjZXUr9plHmmynUlNUCuStLrrEo6mIe91riIBhvxcCMZbKSD+fhauQp3YK05yleN7shZUZxZin1pQCRfy3L3tOHsolbi0IzZyF05M77OS1EIJv/EYLVSLC7Q30C2XHU3UDRNOkVUU5zvNEYwbP/mjcJSlZ6S4Ytiju38VpSQ0+nwharlzOZePD3cwNTatVt45oBf6zq+6R3Etry3fdmIYjg/009VWfRIOOOfsdqsG9c5YGVsrElP5LLkLkBcrcVrOb/I1PbcR0bkeb3d1bgiXn62dKADFoYwSZCgHTM/OhqrWE9FHA1xFKQLNVH0+3QaOgo3Zn50VBi7XrXWUNpZSUknRmhXzkhwkDQu8OfBNoC1FOaFX2ECifyiNZX6A6/WVcb38WMJngvfkvhe61AMvVbM7ruImY2uhOHsgjeSl23Uo8PXaq19Eg8SouC5qHDpN1rgmHXqH6iTf1rwZcNbela63s3D6nbJMKCPHjtWvzWqOpObtxgxVxSYjTotZzpvRG3jEjK8KS74PvYKoRleNMXwnE1TRCO3FwoCYixamMBrs1KNa8+w7uBos7PkFTZjYFwQynXFG5H34D9xfR4qtW717r1mgQeVvcOCeMVhbuFocPsTYQqsrFfMdYdtMLIdbw6gcdxeqqIT3IotbVsJlZCOTcW28wDTnWUaS6XBvhpdIfd9tVesLTXYjNmuHU9MQjvZzYPx1E4WYjvAEyESHzAk2IEt+2wxWMUvsFXVLqVNm7xu8rsoCi57ZZnE4HEuwEJWe2sB7xDug70/WqP1rmwMHN/65chDrtL0WL8OjnzRtRM3dYarLr07yA3dQa638Br76HX2tQmhrTNI6ws3fhiEmDPVlsqDu9U/vZJJB3ht6wa9Y5VqQXiKX+q2qN09/b4x957cfwDkfnCI5+gLQD+9HdC2EVz6IfPDbZHe40V/OF7PjvBqJ1+L2rOfDzX6w1B73qFGbo3X858HL/Kd8cpVVTFZgHTfgd6ocrdUMth35YzYagaMunRloYtCFllMvL1r05HhBV5iH0U9NfuHevrM0+PlxbD1LbwCrdhrcPcKdMD2PG9b67/2PqRJ5Jxmf3O55ZUYfv6m0HxpV70eFqjPazoozzdU9buF157VLbDn76U/on1fKKq6FLkwfeSU9vo5kwa7RO56ouNO74Lz2jbir+Xbhkltf+fzNJ37bg509gWYvzogbopyeBXlk0/eFb8AzPnPF80nR9XyF8C5+HlwvhrO/7OqcdQyvOlahu76uXXn8OZWNec7NA4tmKZhOT80/Ud2X6PhF1z3U1P7X5NH/wJQSwcI03OcU6kGAADSGQAAUEsBAhQAFAAIAAgADqGMP0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAOoYw/03OcU6kGAADSGQAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAEEHAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> |
Version vom 27. April 2012, 18:43 Uhr
Startseite --- Die Wurzelfunktion - Übungen - Anwendungen --- Die allgemeine Wurzelfunktion - Übungen - Anwendungen --- Die Wurzelfunktion als Umkehrfunktion
Bei den folgenden Aufgaben bearbeitest du den Zusammenhang zwischen dem Flächeninhalt eines Quadrats und seiner Seitenlänge.
Ein Quadrat mit Seitenlänge hat den Flächeninhalt .
Ist die Seitenlänge , dann ist also der Flächeninhalt .
Umgekehrt ist dann für ein Quadrat mit Flächeninhalt die zugehörige Seitenlänge .
Im folgenden Applet wird der Seitenlänge eines Quadrats der Flächeninhalt zugeordnet.
a) Welcher Flächeninhalt ergibt sich für = 1; 1,5; 2 und 2,5? Halte deine Ergebnisse in Form einer Tabelle fest! |
Wie kannst du die Seitenlänge eines Quadrats bei gegebenem Flächeninhalt berechnen?
a) Setze in deine Formel verschiedene Werte für A ein und berechne a! Trage die Ergebnisse in eine Wertetabelle ein! b) Stelle deine Wertepaare im Koordinatensystem (A entspricht der x-Achse, a entspricht der y-Achse) dar! |
In der vorherigen Aufgabe hast du einigen Flächeninhalten exemplarisch ihre Seitenlänge zugeordnet. Mit dem folgenden Applet kannst du diesen Zusammenhang verallgemeinern.
a) Variiere mit dem Schieberegler A und verifiziere deine Tabelle. |
b) Die x-Koordinate des Punktes P ist die Größes A des Flächeninhalts, die y-Koordinate die Länge a der Seite des Quadrats.
c) Über jeden Wert des Flächeninhalts A des Quadrats wird seine Seitenlänge a angetragen. Es ist der Graph der Funktion .
Die Funktion , die jeder nicht negativen reellen Zahl x ihre Quadratwurzel zuordnet heißt Quadratwurzelfunktion oder einfach nur Wurzelfunktion. Ihr Graph schaut so aus:
|
Aufgabe 1
a) 1; 2,25; 4; 6,25; 9
b) A(a) = a2
c) 25; 100, 225
Aufgabe 2
Die Wurzelfunktion hast du nun kennengelernt. Als nächstes kannst du wählen, ob du Übungen oder Anwendungen zur Wurzelfunktion behandeln willst.