Wurzelfunktion allgemeine Wurzelfunktion
Startseite --- Die Wurzelfunktion - Übungen - Anwendungen --- Die allgemeine Wurzelfunktion - Übungen und Anwendungen --- Die Wurzelfunktion als Umkehrfunktion
Bei den folgenden Aufgaben bearbeitest du den Zusammenhang zwischen dem Volumen eines Würfels und seiner Seitenlänge.
Ein Würfel mit der Seitenlänge hat das Volumen
.
Ist die Seitenlänge , dann ist also das Volumen
.
Umgekehrt ist dann für einen Würfel mit Volumen die zugehörige Seitenlänge
.
Im folgenden Applet wird der Seitenlänge
a) Welches Volumen |
a) 1, 3,375; 8; 15,625
b)
c) 27; 125; 1000; 3375
c) 1,2; 1,4; 1,5; 1,6; 1,7; 2,1; 2,5; 2,6
Wie kannst du die Seitenlänge bei gegebenem Volumen
berechnen?
Fehler beim Parsen(Lexikalischer Fehler): a = \sqrt[3]{V}\
Die Gleichung ![]() Fehler beim Parsen(Lexikalischer Fehler): \sqrt[n]{a}\ heißt die n-te Wurzel aus a. |
a) Setze in deine Formel verschiedene Werte für das Würfelvolumen V ein und berechne welche Werte
sich für die Seitenlänge a ergeben! Trage die Ergebnisse in eine Wertetabelle ein!
|
Allgemein ist für jede natürliche Zahl mit |
Gib für die Würfelaufgabe die zugehörige Funktionsgleichung an! |
mit
|
1. Stelle mit dem Schieberegler die passende Wurzelfunktion ein.
2. (0;0 und (1;1)
Du hast nun die allgemeine Wurzelfunktion kennengelernt. Als nächstes kannst du wählen, ob du Übungen oder Anwendungen machen willst.