Wurzelfunktion Übungen 1
Startseite --- Die Wurzelfunktion - Übungen - Anwendungen --- Die allgemeine Wurzelfunktion - Übungen - Anwendungen --- Die Wurzelfunktion als Umkehrfunktion
Bei den Übungen zur Wurzelfunktion lernst du weitere sich aus ihr ergebene Funktionen kennen.
Zeichne den Graphen der Funktionen im Intervall [0;3] und den Graphen der Funktion im Intervall [0;7] in ein Koordinatensystem. Beschreibe mit Worten die besondere Lage dieser beiden Graphen zueinander. |
Neben der Quadratwurzelfunktion treten auch Funktionsterme der Art
- ,
- und
-
- ,
auf. Diese wirst du nun mit dem Gruppenpuzzle untersuchen.
Im Applet ist der Graph der Wurzelfunktion mit dargestellt. Wie ändert sich der Graph der Wurzelfunktion für
|
- Für a = -1 wird der Graph der Wurzelfunktion an der x-Achse gespiegelt.
- Für 0 < a < 1 wird der Graph der Wurzelfunktion in y-Richtung gestaucht.
- Für 1 < a wir der Graph der Wurzelfunktion in y-Richtung gestreckt.
- Für negative a wird der Graph von 2. oder 3. an der y-Achse gespiegelt.
Du betrachstest die Funktion . Im folgenden Applet kannst du mit den Schiebereglern die Werte für und verändern. Anfangs ist und . Es ist der Graph der Quadratwurzelfunktion dargestellt.
|
1. Für wird der Graph der Wurzelfunktion nach links verschoben. Die Nullstelle tritt bei auf. Für wird der Graph der Wurzelfunktion nach rechts verschoben. Die Nullstelle tritt bei auf.
2. Für wird der Graph der Wurzelfunktion in y-Richtung gestaucht. Für wird der Graph in y-Richtung gestreckt. Ist so wird der Graph mit an der y-Achse gespiegelt.
4.
5. Ist dann ist und ist , dann ist
Skizziere und vergleiche die Graphen |
: Der Graph der Quadratwurzelfunktion wird um 2 nach links verschoben.
: Der Graph der Quadratwurzelfunktion wird um 2 nach oben verschoben.
: Der Graph der Quadratwurzelfunktion wird um 2 nach rechts verschoben.
: Der Graph der Quadratwurzelfunktion wird um 2 nach unten verschoben.
Es ist die Funktion gegeben.
|
a) Öffne dieses Arbeitsblatt. Wähle Niveau 2 und finde zum gegebenen Funktionsgraph den passenden Funktionsterm. b) Löse dieses Quiz. |
Zurück zu Wurzelfunktion oder weiter mit Anwendungen