Wurzelfunktion allgemeine Wurzelfunktion
Startseite --- Die Wurzelfunktion - Übungen - Anwendungen --- Die allgemeine Wurzelfunktion - Übungen - Anwendungen --- Die Wurzelfunktion als Umkehrfunktion
Ein Würfel mit der Seitenlänge hat das Volumen .
Ist die Seitenlänge , dann ist das Volumen .
Umgekehrt ist dann für einen Würfel mit Volumen die zugehörige Seitenlänge .
Im folgenden Applet ist über der Seitenlänge eines Würfels das Volumen aufgetragen. Der Punkt V hat die Koordinaten (). Mit dem Schieberegler kannst du verschiedene Werte für a einstellen.
a) Welches Volumen ergibt sich für = 1; 1,5; 2; 2,5? |
a) a, 3,375; 8; 15,625
b) 27; 125; 1000; 3375
c) 1,2; 1,4; 1,5; 1,6; 1,7; 2,1; 2,5; 2,6
Es ist
Man schreibt auch dafür
Merke:
Die Gleichung hat für jede natürliche Zahl n und jede nicht negative reelle Zahl x als Lösung Fehler beim Parsen(Lexikalischer Fehler): \sqrt[n]{a}\ heißt die n-te Wurzel aus a. |
a) Setze verschiedene Werte für das Würfelvolumen V ein, und berechne welche Werte sich für die Seitenlänge a ergeben. Trage die Ergebnisse in eine Wertetabelle ein. b) Erstelle ein V-a-Diagramm (V nach rechts, a nach oben antragen!) |
Merke:
Man definiert für jede natürliche Zahl n die allgemeine Wurzelfunktion n-ten Grades oder n-te Wurzelfunktion Fehler beim Parsen(Lexikalischer Fehler): f: x \rightarrow \sqrt[n]{x}\ mit und . |
Gib für die Würfelaufgabe die zugehörige Funktion an. |
mit
|
1. Stelle mit dem Schieberegler die passende Wurzelfunktion ein.
2. (0;0 und (1;1)
Betrachte nun die Wurzelfunktionen im folgenden Applet:
|
- Für ungerade n ist der Funktionsgraph auch für negative x gezeichnet.
- Es ist und damit oder allgemein und damit , also ist bei ungeraden Exponenten n auch die n-te Wurzel aus einer negativen Zahl erklärt.